Bab 2 Persamaan Kuadratik

2.2b Penyempurnaan Kuasa Dua

(A) Penyempurnaan Kuasa Dua
1.      Ungkapan x 2 + 2x + 1 boleh ditulis dalam bentuk (x + 1)2 yang dikenali sebagai ‘kuasa dua sempurna’. Sebagai contoh x 2 + 2x + 1 = (x + 1)2 .

Contoh:
Selesaikan setiap persamaan kuadratik yang berikut
(a) (x + 1)2 = 25
(b) x2 8x + 16 = 49

Penyelesaian:
(a)
(x + 1)2 = 25
(x + 1)2 = ±√25
x = −1 ± 5
x = 5  atau  x = −6

(b)
x 2 8x + 16 = 49
(x 4)2 = 49
(x 4) = ±√49
x = 4 ± 7
x = 11  atau  x = −3


(B) Selesaikan Persamaan Kuadratik dengan Cara Penyempurnaan Kuasa Dua

1. Untuk menyelesaikan persamaan kuadratik, kita membuat persamaan di sebelah kiri sebagai suatu kuasa dua sempurna.
2. Untuk membentuk sebarang ungkapan kuadratik x2 + px kepada suatu kuasa dua sempurna, kita menambahkan ( p 2 ) 2   ke dalam ungkapan itu untuk menjadikan x 2 +px= x 2 +px+ ( p 2 ) 2 = ( x+ p 2 ) 2
3. Langkah-langkah berikut diambil untuk menyelesaikan persamaan kuadratik ax2 + bx = – c dengan menggunakan cara penyempurnaan kuasa dua.
 (a) Tulis semula persamaan ax 2 + bx + c = 0 dalam bentuk ax2 + bx = – c.
 (b) Jika pekali a ≠ 1, tukarkannya kepada 1 (dengan pembahagian).
 (c) Tambah ( p 2 ) 2   iaitu ( pekali bagi x 2 ) 2   pada kedua-dua belah persamaan.
 (d) Tulis ungkapan pada sebelah kiri sebagai kuasa dua sempurna.
 (e) Selesaikan persamaan itu .


Contoh:
Selesaikan persamaan kuadratik x 2 6x 3 = 0 dengan cara penyempurnaan kuasa dua.

Penyelesaian:
x 2 6x 3 = 0 ← (pekali bagi x 2 = 1)
x 2 6x = 3 ← (pekali bagi x = b = 6)
x 2 6x + [½ × (6)]2 = 3 + [½ × (6)]2 ← [tambah ( pekali bagi x 2 ) 2   iaitu (½ × (6)2, pada kedua-dua belah persamaan]
x 2 6x + (3)2 = 3 + (–3)2
(x 3)2 = 12
x 3 = ±√12
x = 3 ± √12
x = 3 + √12   atau   3 – √12 
x = 6.464      atau   –0.464   

Bab 2 Persamaan Kuadratik

2.2a Pemfaktoran
1. Secara amnya, jika
(x – p)(x – q) = 0
Maka
x – p = 0   atau  x – q = 0
      x = p   atau        x = q
p dan q  adalah punca-punca persamaan.

Perhatian:
1. Pastikan persamaan ditulis dalam bentuk amnya ax2 + bx+ c = 0 sebelum pemfaktoran.
2. Kaedah ini hanya boleh digunakan sekiranya ungkapan kuadratik itu boleh difaktorkan sepenuhnya.


Contoh 1:
Cari punca-punca persamaan kuadratik berikut:
(a) x (2x− 8) = 0 
(b) x2 −16x = 0
(c) 3x2 − 75x = 0
(d) 5x2 − 100x = 25x

Penyelesaian:
(a) 
x (2x − 8) = 0 
x = 0  atau  2x − 8 = 0
2x − 8 = 0
2x = 8
x = 4
x = 0  atau  x = 4

(b)
x2 −16x = 0
x (x − 16) = 0 
x = 0  atau x − 16 = 0
x = 0  atau  x = 16

(c) 
3x2 − 75x = 0
3x (x− 25) = 0  
3x = 0   atau x − 25 = 0
x = 0  atau  x = 25

(d)  
5x2 − 100x = 25x
5x2 − 100x − 25x = 0
5x2− 125x = 0
x (5x − 125) = 0 
x = 0  atau  5x − 125 = 0
5x = 125
x = 25
x = 0  atau x = 25


Contoh 2:
Selesaikan persamaan kuadratik yang berikut
(a) x 2 4x 5 = 0
(b) 1 5x + 2x 2 = 4


Penyelesaian:
(a) 
x 2 4x 5 = 0
(x – 5) (x + 1) = 0
x – 5 = 0  atau  x + 1 = 0
x = 5  atau  x = –1

(b)
1 5x + 2x 2 = 4
2x 2 5x + 1 – 4 = 0
2x 2 5x – 3 = 0
(2x + 1) (x – 3) = 0
2x + 1= 0  atau  x – 3 = 0
2x = –1  atau  x = 3
x = –½  atau  x = 3

Bab 2 Persamaan Kuadratik

2.2 Penyelesaian Persamaan Kuadratik
1.Menyelesaikan sesuatu persamaan kuadratik bermakna mencari punca-punca persamaan itu.

Contoh:
Cari punca-punca persamaan kuadratik berikut:
(a) x 2 = 9
(b) 2x 2 98 = 0

Penyelesaian:
(a) x 2 = 9
     x= ±√9
     x= ±3

(b) 2x 2 98 = 0
            2x 2 = 98
            x 2 = 98/2 = 49
            x= ±√49 =  ±7

2. Persamaan kuadratik boleh diselesaikan dengan salah satu kaedah berikut:
(a) pemfaktoran,
(b) penyempurnaan kuasa dua,
(c) penggunaan rumus


Bab 2 Persamaan Kuadratik

2.1.1 Persamaan Kuadratik
1.      Persamaan Kuadratik (misalnya, 2x2 + 5x + 6 = 0) adalah persamaan yang memenuhi syarat-syarat berikut:
            (a)   Ia mengandungi tatatanda kesamaan, ‘=’
            (b)   Ia melibatkan hanya satu pembolehubah x.
            (c)    Kuasa tertinggi bagi x ialah 2.

Contoh Persamaan Kuadratik
Berikut adalah contoh-contoh persamaan kuadratik
·         2x2 + 3x + 4 = 0
·         t2 = 24
·         y (6y − 3) = 5

Contoh Persamaan Bukan Kuadratik
·         2x + 1 = 0, (Sebab: Kuasa tertinggi bagi x ≠ 2.)
·         2x3 + 1 = x, (Sebab: Kuasa tertinggi bagi x ≠ 2.)
     t 2 + 5 t =3, (Sebab:  5 t =5 t 1 ) 

Bentuk Am Persamaan Kuadratik
Bentuk am persamaan kuadratik ialah
ax2 + bx + c = 0
dengan a, b, dan c ialah pemalar dan a  0.


Contoh 1 (Cari nilai bagi a, b dan c):
Tulis semula setiap persamaan kuadratik berikut dalam bentuk am. Cari nilai a, b, dan c.
(a) (3x − 5)2 = 0
(b) (x − 8) (x + 8) = 10


Penyelesaian:





Bab 2 Persamaan Kuadratik

2.4 Syarat untuk Jenis Punca Persamaan Kuadratik

2.4.1 Jenis-jenis Punca Persamaan Kuadratik
Jenis-jenis punca persamaan kuadratik ditentukan oleh nilai ungkapan b2 – 4 ac


   b2 – 4ac > 0   ↔  dua punca nyata yang berbeza
   b2 – 4ac = 0   ↔  dua punca nyata yang sama
   b2 – 4ac < 0   ↔  tiada punca nyata
   b2 – 4ac ≥ 0   ↔  punca nyata


Contoh:
Tentukan jenis punca bagi setiap persamaan kuadratik yang berikut. 
(a) 5x 2 – 7x + 3 = 0
(b) x 2 – 4x + 4 = 0
(c) –2x 2 + 5x 9 = 0

Penyelesaian:



Bab 2 Persamaan Kuadratik

2.3c Cari Hasil Tambah Punca (HTP) dan Cari Hasil Darab Punca (HDP) bagi suatu Persamaan Kuadratik (Contoh)

Contoh:
Punca-punca bagi 2x 2 + 3x 1 = 0 adalah αdan β. Cari nilai-nilai berikut:
(a) ( α+1 )( β+1 ) (b)  1 α + 1 β (c)  α 2 β+α β 2 (d)  α β + β α [ Petunjuk: α 2 + β 2 = ( α+β ) 2 2αβ ]

Penyelesaian:





Bab 2 Persamaan Kuadratik

2.3b Cari Hasil Tambah Punca (HTP) dan Cari Hasil Darab Punca (HDP) bagi suatu Persamaan Kuadratik


Contoh:
Cari hasil tambah punca dan hasil darab punca bagi persamaan yang berikut:
(a) x 2 + 7x 3 = 0
(b) x (x 1) = 5 (1 x)

Penyelesaian:
(a) x 2 + 7x 3 = 0
a = 1, b = 7, c = –3,

Hasil Tambah Punca (HTP) α+β= b a = 7 1 =7 Hasil Darab Punca (HDP) αβ= c a = 3 1 =3

(b)
x (x 1) = 5 (1 x)
x 2 x = 5 – 5x
x 2 x – 5 + 5x = 0
x 2 + 4x – 5 = 0
a = 1, b = 4, c = –5,

Hasil Tambah Punca (HTP) α+β= b a = 4 1 =4 Hasil Darab Punca (HDP) αβ= c a = 5 1 =5


Bab 2 Persamaan Kuadratik

2.2c Penyelesaian Persamaan Kuadratik – Rumus Kuadratik

(A) Rumus Kuadratik
Persamaan kuadratik ax 2 + bx + c = 0 boleh diselesaikan dengan menggunakan rumus kuadratik.
  x= b± b 2 4ac 2a   
Contoh:
Selesaikan setiap persamaan yang berikut dengan menggunakan rumus. 
(a) x 2 + 5x 24 = 0
(b) x (x + 4 ) = 10

Penyelesaian:
(a) Bagi persamaan x 2 + 5x 24 = 0
a = 1, b = 5, c = 24,

Dari x= b± b 2 4ac 2a x= ( 5 )± ( 5 ) 2 4( 1 )( 24 ) 2( 1 ) x= 5± 121 2 x=8  or  x=3

(b) Bagi persamaan, x (x + 4 ) = 10
                                    x2 + 4x – 10 = 0
a = 1, b= 4, c = –10

Dari x= b± b 2 4ac 2a x= ( 4 )± ( 4 ) 2 4( 1 )( 10 ) 2( 1 ) x= 4± 56 2 x=1.742  or  x=5.742


Bab 2 Persamaan Kuadratik

2.3a Pembentukan Persamaan Kuadratik daripada Punca

Apabila diberi α dan β ialah punca-punca bagi persamaan ax 2 + bx + c = 0, maka


x = α                atau     x = β
x α = 0         atau     x β = 0
(x α) (x β) = 0
x 2 – ( α + β ) x + αβ = 0

Kesimpulan:
x 2 – (hasil tambah punca ) x + (hasil darab punca) = 0

Contoh:
Bentukkan persamaan kuadratik apabila punca-puncanya adalah seperti berikut:
(a)  3, 1
(b) 2, ¼
(c) , ¼
(d) 3m,2m

Penyelesaian:





Bab 2 Persamaan Kuadratik

2.5 Persamaan Kuadratik, SPM Praktis (Soalan Pendek)
Soalan 3:
Diberi bahawa 3 dan s + 4 ialah punca-punca bagi persamaan kuadratik
x 2 + (t – 1)x + 6 = 0, dengan keadaan sdan t ialah pemalar.
Cari nilai s dan nilai t.

Penyelesaian:
x 2 + (t – 1)x + 6 = 0
x 2 – (1 – t)x+ 6 = 0
a = 1, b = (1 – t), dan c = 6

3 dan s + 4 ialah punca-punca bagi persamaan.
Guna Hasil darab punca untuk mencari nilai s.
3×( s+4 )= c a
3 (s + 4) = 6
s + 4 = 2
s = –2  

Guna Hasil tambah punca untuk mencari nilai t.
3+( s+4 )= b a
3 + s + 4 = 1 – t
3 + (–2) + 4 1= – t
4 = – t
t = 4


Soalan 4:
Diberi satu daripada punca persamaan kuadratik x2– 9x + m = 0 ialah setengah kali punca yang satu lagi. Cari nilai bagi m.

Penyelesaian:
Katakan α dan β ialah dua punca bagi x2 – 9x + m = 0.
Bandingkan x2 – 9x + m = 0 dengan persamaan kuadratik ax2 + bx + c = 0.
a = 1, b = –9, dan c = m.

Hasil tambah dua punca,
α+β= b a =( 9 1 )=9

Katakan,  β= α 2 punca kedua ialah setengah daripada punca pertama Dari α+β=9 α+ α 2 =9 3α 2 =9 α=6

Hasil darab dua punca,
αβ= c a α( α 2 )=m m= α 2 2 = 6 2 2 =18