6.8.7 Geometri Koordinat, SPM Praktis (Kertas 2)


6.8.7 Geometri Koordinat, SPM Praktis (Kertas 2)
Soalan 7:
Penyelesaian secara lukisan berskala tidak diterima.
Rajah di bawah menunjukkan segi tiga PRS. Sisi PR bersilang dengan paksi-y pada titik Q.


(a) Diberi PQ : QR = 2 : 3, cari
(i) koordinat P,
(ii) persamaan garis lurus PS,
(iii) luas, dalam unit2, segi tiga PRS.
(b) Titik M bergerak dengan keadaan jaraknya dari titik R adalah sentiasa dua kali jaraknya dari titik S.
Cari persamaan lokus M.


Penyelesaian:
(a)(i)
P=(2(6)+3h2+3,2(12)+3k2+3)(0,6)=(12+3h5,24+3k5)12+3h5=0      3h=12 h=424+3k5=63k=3024k=2P=(4,2)

(a)(ii)
mPS=2(6)42 =86 =43Persamaan PS:yy1=43(x2)y(6)=43x+833y+18=4x+83y=4x10

(a)(iii)
Luas  PRS=12|4   2    6  2  6 12  42|=12|(24+24+12)(43648)|=12|60(80)|=70 unit2

(b)
Katakan P=(x,y)MR=2MS(x6)2+(y12)2=2(x2)2+(y+6)2(x6)2+(y12)2=4[(x2)2+(y+6)2]x212x+36+y224y+144=4[x24x+4+y2+12y+36]x212x+y224y+180=4x216x+4y2+48y+1603x2+3y24x+72y20=0


4.2.4 SPM Praktis, Persamaan Serentak


Soalan 7:
Diberi perimeter sebuah segi empat tepat ialah 24 cm dan luasnya ialah 35 cm2 . Cari panjang dan lebar segi empat tepat itu.

Penyelesaian:
Anggap panjang = x cm dan lebar = y cm.
Diberi perimeter = 24 cm
Maka, 2x + 2y = 24
x + y = 12 ------ (1)

Diberi luas = 112 cm2
Maka, xy = 35 ------ (1)

Dari persamaan (1): y = 12 – x ------ (3)
Ganti (3) ke dalam (2):
x (12 – x) = 35
12xx2 = 35
x2 – 12x  + 35 = 0
(x – 5)(x – 7) = 0
x = 5, 7

Ganti x = 5 ke dalam (3):
y = 12 – 5 = 7

Ganti x = 7 ke dalam (3):
y = 12 – 7 = 5

Maka,
panjang = 5 cm dan lebar = 7 cm
atau
panjang = 7 cm dan lebar = 5 cm.



Soalan 8:

Dalam rajah di atas, PQRS ialah sekeping kertas berbentuk segi empat tepat dengan luas 112 cm2 . STR berbentuk semibulatan digunting daripada kertas itu. Perimeter kertas yang tinggal ialah 52 cm. Dengan menggunakan π = 22/7, hitung nilai-nilai integer x dan y.

Penyelesaian:
Diberi luas PQRS = 112 cm2
Maka, (14x)(2y) = 112
28xy = 112
xy = 4 ------ (1)

Diberi perimeter kertas yang tinggal PSTRQ = 52 cm
PS + QR + PQ + Panjang lengkok STR = 52
2y + 2y + 14x + ½ (2πr) = 52
4y + 14x + (22/7) (7x) = 52
4y + 14x + 22x = 52
4y + 36x = 52
y + 9x = 13 ------ (2)

Dari persamaan (2): y = 13 – 9x ------ (3)

Ganti (3) ke dalam (1):
x (13 – 9x) = 4
13x – 9x2 = 4
9x2 – 13x + 4 = 0
(x – 1)(9x – 4) = 0
x = 1      atau    4/9 (bukan integer)

Dari (3):
Nilai integer x = 1,
Nilai integer y yang sepadan
= 13 – 9(1)
= 4.

3.7.4 Fungsi Kuadratik, SPM Praktis (Soalan Panjang)


Soalan 6:


Rajah di atas menunjukkan graf lengkung y = x2 + xkx + 5 dan y = 2(x – 3) – 4h yang bersilang pada dua titik pada paksi-x. Cari
(a) nilai k dan nilai h,
(b) nilai minimum bagi kedua-dua lengkung itu.


Penyelesaian:
(a)
y=x2+xkx+5=x2+(1k)x+5=[x+(1k)2]2(1k2)2+5paksi simetri bagi graf ini ialahx=(1k)2

y=2(x3)24hpaksi simetri bagi graf ini ialahx=3.Maka, 1k2=3            1+k=6                     k=7

Gantikan k=7 ke dalam persamaany=x2+x7x+5  =x26x+5Pada paksix,y=0;x26x+5=0(x1)(x5)=0x=1,5

Pada titik (1,0)Gantikan x=1,y=0 ke dalam graf:y=2(x3)24h0=2(13)24h4h=2(4)4h=8h=2

(b)
Lengkung y=x26x+5=(x3)29+5=(x3)24Maka, nilai minimumnya=4.Bagi lengkung y=2(x3)28, nilai minimum=8.

3.7.3 Fungsi Kuadratik, SPM Praktis (Soalan Panjang)


Soalan 5:
Diberi fungsi kuadratik f(x) = 2x2px + p mempunyai nilai minimum –18 pada nilai x = 1.
  1. Cari nilai p dan nilai q.
  2. Dengan nilai p dan nilai q yang diperoleh, cari nilai-nilai x di mana graf f(x), memotong paksi-x.
  3. Seterusnya, lakarkan graf bagi f(x).

Penyelesaian:
(a)
f(x)=2x2px+q=2[x2p2x+q2]=2[(x+p4)2(p4)2+q2]=2[(xp4)2p216+q2]=2(xp4)2p22+q

Maka,p4=1(1)dan p28+q=18(2)Dari(1),p=4.Ganti p=4 ke dalam (2):(4)28+q=18  168+q=18             q=18+2               =16


(b)
f(x)=2x24x16Memotong paksi-x,f(x)=0.2x24x16=0x22x8=0(x4)(x+2)=0x=4,2Graf f(x) memotong paksi-x di x=2 dan x=4.

(c)


3.6.4 Fungsi Kuadratik, SPM Praktis (Soalan Pendek)


Soalan 7:
Cari julat nilai k jika persamaan kuadratik 3(x2kx – 1) = kk2 mempunyai dua punca nyata yang berbeza.

Penyelesaian:
3(x2kx1)=kk23x23kx3k+k2=03x23kx+k2k3=0a=3,b=3k,c=k2k3Dua punca nyata berbeza.b24ac>0(3k)24(3)(k2k3)>09k212k2+12k+36>03k2+12k+36>0k2+4k+12>0k24k12<0(k+2)(k6)<0k=2,6



Julat nilai k ialah 2<k<6.



Soalan 8 (4 markah):
Fungsi kuadratik f ditakrifkan oleh f(x) = x2 + 4x + h, dengan keadaan h ialah pemalar.
(a) Ungkapkan f(x) dalam bentuk (x + m)2 + n, dengan keadaan m dan n ialah pemalar.

(b)
 Diberi nilai minimum bagi f(x) ialah 8, cari nilai h.

Penyelesaian:
(a)
f(x) = x2 + 4x + h
  = x2 + 4x + (2)2 – (2)2 + h
  = (x + 2)2 – 4 + h

(b)
Diberi nilai minimum bagi f(x) = 8
– 4 + h = 8
h = 12



Soalan 9 (3 markah):
Cari julat nilai x dengan keadaan fungsi kuadratik f(x) = 6 + 5xx2 ialah negatif.

Penyelesaian:
(a)
f(x) < 0
6 + 5xx2 < 0
(6 – x)(x + 1) < 0
x < –1, x > 6



3.6.2 Fungsi Kuadratik, SPM Praktis (Soalan Pendek)


Soalan 5:
Diberi persamaan kuadratik hx2 – (h + 2)x – (h – 4) = 0 mempunyai punca-punca yang nyata dan berbeza. Cari julat nilai h.

Penyelesaian:
Persamaan kuadratik hx2(h+2)x(h4)=0mempunyai punca-punca yang nyata dan berbeza.Maka, b24ac>0(h2)24(h)(h+4)>0h2+4h+4+4h216h>05h212h+4>0(5h2)(h2)>0Pekali h2 positif, graf melengkung ke bawah(5h2)(h2)=0h=25,2



Julat nilai h bagi (5h2)(h2)>0 ialah h<25 atau h>2.




Soalan 6:
Rajah di bawah menunjukkan graf fungsi kuadratik f(x) = (x + 3)2 + 2h – 6, dengan keadaan h ialah pemalar.



(a) Nyatakan persamaan paksi simetri bagi lengkung itu.
(b) Diberi nilai minimum bagi fungsi itu ialah 4, cari nilai h.

Penyelesaian:
(a)
Apabila x + 3 = 0
x = –3
Maka, persamaan paksi simetri bagi lengkung itu ialah x = –3.

(b)
Apabila x + 3 = 0, f(x) = 2h – 6
Nilai minimum bagi f(x) ialah 2h – 6.
Maka, 2h – 6 = 4
2h = 10
h = 5

3.6.1 Fungsi Kuadratik, SPM Praktis (Soalan Pendek)


Soalan 3:
Garis lurus y = 5x – 1 tidak bersilang dengan lengkung y = 2x2 + x + h. Carikan julat nilai h.

Penyelesaian:
y=5x1         ...... (1)y=2x2+x+h ...... (2)Gantikan (1) ke dalam (2),5x1=2x2+x+h2x2+x+h5x+1=02x24x+h+1=0                 b24ac<0(4)24(2)(h+1)<0             168h8<0                            8<8h                            h>1


Soalan 4:
Cari nilai maksimum bagi fungsi 5 – x – 2x2 , dan nilai x apabila ini berlaku.

Penyelesaian:
5x2x2=2x2x+5=2[x2+12x52]=2[x2+12x+(14)2(14)252]=2[(x+14)211652]=2[(x+14)24116]=2(x+14)2+518

Nilai 5x2x2 adalah maksimum apabila2(x+14)2=0  x=14Nilai maksimum bagi 5x2x2 ialah 518.


2.6.5 Persamaan Kuadratik, SPM Praktis (Kertas 2)


Soalan 5:
Diberi α dan β adalah punca-punca persamaan kuadratik x (x – 3) = 2k – 4, dengan keadaan k ialah pemalar.
(a) Cari julat nilai jika αβ.(b) Diberi α2 dan β2 adalah punca-punca bagi satu lagi persamaan kuadratik     2x2+tx4=0, dengan keadaan t ialah pemalar, cari nilai t dan nilai k.

Penyelesaian:
(a)x(x3)=2k4x23x+42k=0a=1, b=3, c=42k   b24ac>0(3)24(1)(42k)>0   916+8k>08k>7  k>78

(b)Dari persamaan x23x+42k=0,α+β=ba         =31         =3.............(1)αβ=ca    =42k1    =42k.............(2)Dari persamaan 2x2+tx4=0,α2+β2=t2α+β=t.............(3)α2×β2=42αβ=8.............(4)Gantikan (1)=(3),3=tt=3Gantikan (2)=(4),42k=84+8=2kk=6

1.5.7 Fungsi, SPM Praktis (Soalan Pendek)


1.5.7 Fungsi, SPM Praktis (Soalan Pendek)

Soalan 19:
Diberi g:x3x52x+7
Fungsi g ditakrifkan untuk semua nilai x kecuali x = a. Cari niali a.

Penyelesaian:
Diingatkan bahawa g (x) tidak tertakrif jika penyebut = 0 iaitu [2x + 7 = 0]
2x + 7 = 0
2x = –7
x=72

Apabila x=72 , g (x) tidak tertakrif
atau g (x) ditakrifkan untuk semua nilai x kecuali
x=72, maka a=72


Soalan 20:
Diberi bahawa fungsi f : x → 3x+ 2. Cari nilai
(a) f (2)
(b) f (– 5)
(c) f (⅓) 

Penyelesaian:
 



Soalan 21:
Jika f : xx2 + 3x+ 2, ungkapkan setiap yang berikut dalam sebutan x:
(a) f (2x)
(b) f (3x+ 1)
(c) f (x2)
 
Penyelesaian:
 


1.5.6 Fungsi, SPM Praktis (Kertas 1, soalan pendek)


Soalan 16:
Diberi fungsi h : x → 3x + 1, dan gh : x → 9x2 + 6x – 4, cari
(a) h-1 (x),
(b) g(x).

Penyelesaian:
(a)
Katakan h1(x)=y,oleh itu  h(y)=x       3y+1=x            3y=x1              y=x13

(b)
g[ h( x ) ]=9 x 2 +6x4 g( 3x+1 )=9 x 2 +6x4 Katakan y=3x+1 oleh itu  x= y1 3      g( y )=9 ( y1 3 ) 2 +6( y1 3 )4             = 9 ( y1 ) 2 9 +2( y1 )4             = y 2 2y+1+2y24             = y 2 5  g( x )= x 2 5


Soalan 17:
Diberi bahawa fungsi  f : x → 6x + 1. Cari nilai p jika f (4) = 4p + 5.

Penyelesaian:
f : x → 6x+ 1
f (x) = 6x + 1
f (4) = 6(4) + 1
f (4) = 25

f
(4) = 4p + 5
25 = 4p + 5
4p = 25 – 5 = 20
p = 20/4 = 5



Soalan 18 (4 markah):
Rajah menunjukkan hubungan antara set A, set B dan set C.

Rajah

Diberi bahawa set A dipetakan kepada set B oleh fungsi  x+1 2 dan dipetakan kepada set C oleh fg : xx2 + 2x + 4.
(a) Tulis fungsi yang memetakan set A kepada set B dengan menggunakan tatatanda fungsi.
(b) Cari fungsi yang memetakan set B kepada set C.

Penyelesaian:

(a)
g:x x+1 2

(b)

g( x )= x+1 2 fg( x )= x 2 +2x+4 f[ g( x ) ]= x 2 +2x+4 f( x+1 2 )= x 2 +2x+4 Katakan  x+1 2 =y x+1=2y x=2y1 f( y )= ( 2y1 ) 2 +2( 2y1 )+4 f( y )=4 y 2 4y+1+4y2+4 f( y )=4 y 2 +3 f( x )=4 x 2 +3 Maka, fungsi yang memetakan set B  kepada set C ialah f( x )=4 x 2 +3.