**Question 6:**In Diagram below,

*PQRST*is a straight line. Find the value of

*x*.

*Solution*:$\begin{array}{l}\text{Interiorangleof}R=\left({180}^{o}-{76}^{o}\right)\xf72={52}^{o}\\ \angle x=\text{exteriorangleof}R\text{}\left(\text{correspondingangles}\right)\\ \text{Hence,}x={76}^{o}+{52}^{o}={128}^{o}\end{array}$

**Question 7:**In Diagram below, find the value of

*y*.

*Solution*:$\begin{array}{l}\angle ABC=\angle BCD\\ \text{}={108}^{o}\text{(alternateangle)}\\ {y}^{o}+{130}^{o}+{108}^{o}={360}^{o}\\ \text{}{y}^{o}={360}^{o}-{238}^{o}\\ \text{}{y}^{o}={122}^{o}\end{array}$

**Question 8:**In Diagram below,

*PSR*and

*QST*are straight lines.

Find the value of

*x*.

*Solution*:$\begin{array}{l}\angle UST+\angle STV={180}^{o}\\ \angle UST={180}^{o}-{116}^{o}={64}^{o}\\ \angle PST=\angle QSR\\ {x}^{o}+\angle UST={135}^{o}\\ {x}^{o}+\angle UST={135}^{o}\\ {x}^{o}={71}^{o}\\ x=71\end{array}$

**Question 9:**

In Diagram below,

*PWV*is a straight line.

(a) Which line is perpendicular to line

*PWV*?

(b) State the value of ∠

*RWU.*

*Solution*:**(a)**

*SW*

**(b)**∠

*RWU*= 13

^{o}+ 29

^{o}+ 20

^{o}= 62

^{o}

**Question 10:**

In Diagram below,

*UVW*is a straight line.

(a) Which line is parallel to line

*TU*?

(b) State the value of ∠

*QVS.*

*Solution*:**(a)**

*QV*

**(b)**∠

*QVS*= 8

^{o}+ 18

^{o}= 26

^{o}