Bab 15 Matriks

4.10 SPM Practis (Soalan Panjang)

Soalan 1:
Diberi bahawa matriks A = (3152)  
(a)  Cari matriks songsang bagi A.
(b)  Tulis persamaan linear serentak berikut dalam persamaan matriks:
      3uv = 9
      5u – 2v = 13
Seterusnya, menggunakan kaedah matriks, hitung nilai u dan nilai v.

Penyelesaian:
(a)A1=13(2)(5)(1)(2153)=1(2153)=(2153)

(b)(3152)(uv)=(913)              (uv)=1(2153)(913)              (uv)=1((2)(9)+(1)(13)(5)(9)+(3)(13))              (uv)=1(56)              (uv)=(56)


Soalan 2:
Diberi bahawa matriks A = ( 2 5 1 3 )  dan matriks B = m( 3 k 1 2 )  dengan keadaan AB = ( 1 0 0 1 )  
(a)  Cari nilai m dan nilai k.
(b)  Tulis persamaan linear serentak berikut dalam persamaan matriks:
      2u – 5v = –15
      u+ 3v = –2
Seterusnya, menggunakan kaedah matriks, hitung nilai u dan nilai v.

Penyelesaian:
(a)
AB= ( 1 0 0 1 ) , Songsang bagi matriks A ialah B.
m= 1 ( 2 )( 3 )( 5 )( 1 ) = 1 11  
k= 5

(b)
( 2 5 1 3 )( u v )=( 15 2 )               ( u v )= 1 11 ( 3 5 1 2 )( 15 2 )               ( u v )= 1 11 ( ( 3 )( 15 )+( 5 )( 2 ) ( 1 )( 15 )+( 2 )( 2 ) )               ( u v )= 1 11 ( 55 11 )               ( u v )=( 5 1 ) u=5,v=1