Bab 14 Pengamiran

3.2 Pengamiran Melalui Penggantian

1. Diberi bahawa ( ax+b ) n dx,n1.

(A) Kaedah Penggantian,
Katakan u=ax+b Oleh itu,  du dx =a           dx= du a

Soalan 1:
Cari  ( 3x+5 ) 3 dx.
Penyelesaian:
Katakan  u = 3 x + 5            d u d x = 3            d x = d u 3 ( 3 x + 5 ) 3 d x = u 3 d u 3    gantikan  3 x + 5 = u dan  d x = d u 3 = 1 3 u 3 d u = 1 3 ( u 4 4 ) + c = 1 3 ( ( 3 x + 5 ) 4 4 ) + c     ganti balik   u = 3 x + 5    = ( 3 x + 5 ) 4 12 + c

(B) Kaedah Rumus
( a x + b ) n = ( a x + b ) n + 1 ( n + 1 ) a + c Oleh itu,  ( 3 x + 5 ) 3 d x = ( 3 x + 5 ) 4 4 ( 3 ) + c                     = ( 3 x + 5 ) 4 12 + c



Soalan 2:
Cari,
(a)  2 7 ( 5x ) 4 dx (b)  2 3 ( 9x2 ) 5 dx

Penyelesaian:
(a)  2 7 ( 5x ) 4 dx= 2 ( 5x ) 3 7( 3 )( 1 ) +c                                      = 2 21 ( 5x ) 3 +c

(b)  2 3 ( 9x2 ) 5 dx = 2 ( 9x2 ) 5 3 dx = 2 ( 9x2 ) 4 3( 4 )( 9 ) +c = 2 108 ( 9x2 ) 4 +c = 1 54 ( 9x2 ) 4 +c