Bab 14 Pengamiran Posted on May 21, 2016 by user 3.4 Kamiran Tentu (Bahagian 1) ∫ a b f( x )dx=F( b )−F( a ) Contoh: Nilaikan yang berikut. (a) ∫ −1 0 ( 3 x 2 −2x+5 )dx (b) ∫ 0 2 ( 2x+1 ) 3 dx Penyelesaian: (a) ∫ −1 0 ( 3 x 2 −2x+5 )dx = [ 3 x 3 3 − 2 x 2 2 +5x ] −1 0 = [ x 3 − x 2 +5x ] −1 0 =0−[ ( −1 ) 3 − ( −1 ) 2 +5( −1 ) ] =0−( −1−1−5 ) =7 (b) ∫ 0 2 ( 2x+1 ) 3 dx = [ ( 2x+1 ) 4 4( 2 ) ] 0 2 = [ ( 2x+1 ) 4 8 ] 0 2 =[ ( 2( 2 )+1 ) 4 8 ]−[ ( 2( 0 )+1 ) 4 8 ] = 625 8 − 1 8 =78