Bab 9 Pembezaan
9.2 Terbitan Pertama untuk Fungsi Polinomial
(A) Membezakan suatu Pemalar
Jika y = a,
Dengan keadaan a ialah suatu pemalar,
maka
(B) Membezakan Pembolehubah dengan Index n
(C) Membezakan suatu Fungsi Linear
(D) Membezakan suatu Fungsi Terbitan
(E) Membezakan suatu Fungsi Pecahan
(F) Membezakan Fungsi Punca Kuasa Dua
Bab 9 Pembezaan
9.2.3 Terbitan Pertama Fungsi Gubahan
(A) Membezakan fungsi gubahan dengan menggunakan Petua Rantai
Jika y = un
dengan keadaan udan v adalah fungsi dalam x
Contoh 1:
Bezakan y = (x2 – 1)8
Penyelesaian:
(B) Membezakan fungsi gubahan dengan menggunakan Kaedah Alternatif - Versi Mudah
Contoh:
Bezakan y = (x2 – 1)8
Penyelesaian:
Contoh 2:
Penyelesaian
Contoh 3:
Penyelesaian
Bab 9 Pembezaan
9.2.2 Terbitan Pertama Hasil Bahagi Dua Polinomial
Cari hasil bahagi terbitan dengan menggunakan kaedah-kaedah yang berikut:
Kaedah 1: Petua Hasil Bahagi
Contoh 1:
Kaedah2: (Pembezaan terus)
Contoh 2:
Penyelesaian:
Contoh 3:
Penyelesaian:
Bab 9 Pembezaan
9.2.1 Terbitan Pertama Hasil Darab Dua Polinomial
Cari hasil darab terbitan dengan menggunakan kaedah-kaedah yang berikut:
Kaedah 1: Petua Hasil Darab
Jika u(x) dan v(x) adalah dua fungsi x dan y = uv maka
Contoh 1:
Kaedah Alternatif: (Pembezaan terus)
Contoh 2:
Diberi bahawa y= (2x + 3)(3x3 – 2x2– x), cari dy/dx.
Penyelesaian:
y = (2x + 3)(3x3 – 2x2 – x)
dy/dx = (2x + 3)(9x2 – 4x – 1) + (3x3 – 2x2 – x)(2)
dy/dx = (2x + 3)(9x2 – 4x – 1) + (6x3 – 4x2 – 2x)
Contoh 3:
Diberi bahawa y= 4x3 (3x + 1)5, cari dy/dx.
Penyelesaian:
y = 4x3 (3x + 1)5
dy/dx
= 4x3. 5 (3x + 1)4.3 + (3x + 1)5.12x2
= 60x3 (3x + 1)4 + 12x2 (3x + 1)5
= 12x2 (3x + 1)4 [5x + (3x + 1)]
= 12x2 (3x + 1)4 (8x + 1)
Bab 9 Pembezaan
9.7.4 Pembezaan, SPM Praktis (Kertas 1)
Soalan 15:
Cari koordinat bagi titik pada lengkung, y = (4x – 5)2 supaya kecerunan normal lengkung itu ialah ⅛.
Penyelesaian:
y = (4x – 5)2
dy/dx = 2 (4x – 5). 4 = 32x – 40
Diberi normal ialah ⅛, maka kecerunan tangen ialah –8.
dy/dx = –8
32x – 40 = –8
32x = 32
x = 1
y = [4 (1) – 5]2= 1
Hence, the coordinates of the point on the curve, y= (4x – 5)2 is (1, 1).
Soalan 16:
Suatu lengkung mempunyai fungsi kecerunan kx2 – 7x, dengan keadaan k ialah pemalar. Tangen kepada lengkung di titik (1, 4) adalah selari dengan garis lurus y + 2x –1 = 0.
Cari nilai k.
Cari nilai k.
Penyelesaian:
Diberi fungsi kecerunan kx2 – 7x selari dengan garis lurus y + 2x –1 = 0
dy/dx = kx2 – 7x
y + 2x –1 = 0, y = –2x + 1, kecerunan garis lurus = –2
Maka kx2 – 7x = –2
Di titik (1, 4),
k (1)2– 7(1) = –2
k – 7 = –2
k = 5
Soalan 17:
Dalam rajah di atas, garis lurus PR adalah normal kepada lengkung
at Q.
Cari nilai k.
Cari nilai k.
Penyelesaian:
Soalan 18:
Garis normal kepada lengkung y = x2 + 3x pada titik P adalah selari dengan garis lurus y = –x + 12. Cari persamaan garis normal kepada lengkung itu pada titik P.
Penyelesaian:
Diberi normal kepada lengkung di titik P adalah selari kepada garis lurus y = –x + 12. Maka, kecerunan normal lengkung itu = –1.
Seterusnya, kecerunan tangen kepada lengkung = 1
y = x2 + 3x
dydx = 2x + 3
2x + 3 = 1
2x = –2
x = –1
y = (–1)2 + 3 (–1)
y = –2
Titik P = (–1, –2).
Persamaan garis normal kepada lengkung itu pada titik P ialah,
y – (–2) = –1 (x – (–1))
y + 2 = – x – 1
y = – x – 3
2.4.1 Support and Locomotion in Humans and Animals (Structured Question 1 & 2)
Question 1:
Diagram I and Diagram II show different positions of a forearm during a movement.
(a) Complete Diagram I by drawing the triceps muscle which is involved in the movement of the forearm.
(b) State one adaptive characteristic of tissue R shown in Diagram I which helps in the movement of the forearm.
(c) Explain the action of the muscles which cause the movement of the forearm in Diagram II.
(d) Diagram III shows a joint at the knee.
Explain the health problem normally faced by an old person when tissue P is impaired.
(e) An athlete must do a warming up exercise before starting an event.
Explain why.
Answer:
(a)
(b)
Strong/ tough/ non-elastic tissue
(c)
When the biceps relaxes and the triceps contracts, the radius and ulna are pulled downwards and the forearm is straightened.
(d)
- An old person will suffer from osteoarthritis.
- The wear and tear of the cartilage is due to ageing.
- The repetitive use of the joints over the years irritates and inflames the cartilage.
- Eventually, the cartilage begins to degenerate and this causes friction between the bones, leading to pain and restriction of joint mobility.
(e)
- Warming up exercise is needed so that the heart rate increases. This enables oxygen in the blood to travel faster. The capillaries dilate and let more oxygen travel in the blood.
- Warming up exercise also increases the temperature in the muscles. It loosens up the muscles and joints. This removes lactic acid, lets the muscle fibres have greater extensibility and elasticity and increases the force and contraction of the muscles.
Diagram I and Diagram II show different positions of a forearm during a movement.
(a) Complete Diagram I by drawing the triceps muscle which is involved in the movement of the forearm.
(b) State one adaptive characteristic of tissue R shown in Diagram I which helps in the movement of the forearm.
(c) Explain the action of the muscles which cause the movement of the forearm in Diagram II.
(d) Diagram III shows a joint at the knee.
Explain the health problem normally faced by an old person when tissue P is impaired.
(e) An athlete must do a warming up exercise before starting an event.
Explain why.
Answer:
(a)
(b)
Strong/ tough/ non-elastic tissue
(c)
When the biceps relaxes and the triceps contracts, the radius and ulna are pulled downwards and the forearm is straightened.
(d)
- An old person will suffer from osteoarthritis.
- The wear and tear of the cartilage is due to ageing.
- The repetitive use of the joints over the years irritates and inflames the cartilage.
- Eventually, the cartilage begins to degenerate and this causes friction between the bones, leading to pain and restriction of joint mobility.
(e)
- Warming up exercise is needed so that the heart rate increases. This enables oxygen in the blood to travel faster. The capillaries dilate and let more oxygen travel in the blood.
- Warming up exercise also increases the temperature in the muscles. It loosens up the muscles and joints. This removes lactic acid, lets the muscle fibres have greater extensibility and elasticity and increases the force and contraction of the muscles.
Bab 9 Pembezaan
9.7 Pembezaan, SPM Praktis (Kertas 1)
Soalan 11:
Diberi fungsi graf mempunyai
fungsi kecerunan dengan
hdan k ialah pemalar. Cari nilai h dan k.
Penyelesaian:
Tetapi, diberi
dengan perbandingan,
3h = 12 atau 2k = 258
h = 4 k = 129
Soalan 12:
Penyelesaian
Soalan 13:
Jika y = x2 + 4x, tunjukkan
Penyelesaian
Soalan 14:
Diberi y = x (6 – x), ungkapkan dalam
sebutan x yang paling ringkas.
Seterusnya, cari nilai xyang memuaskan persamaan
Penyelesaian:
Bab 9 Pembezaan
9.7 Pembezaan, SPM Praktis (Kertas 1)
Soalan 6:
Diberi f (x) = 3x2(4x2 – 1)7, cari f’(x).
Penyelesaian:
f (x) = 3x2(4x2 – 1)7
f’(x) = 3x2. 7(4x2 – 1)6. 8x + (4x2 – 1)7. 6x
f’(x) = 168x3 (4x2 – 1)6 + 6x (4x2 – 1)7
f’(x) = 6x (4x2 – 1)6[28x2+ (4x2 – 1)]
f’(x) = 6x (4x2 – 1)6 (32x2 – 1)
Soalan 7:
Diberi y = (1 + 4x)3(3x2 – 1)4, cari dy/dx.
Penyelesaian:
y = (1 + 4x)3(3x2 – 1)4
dy/dx
= (1 + 4x)3. 4(3x2 – 1)3.6x + (3x2 – 1)4. 3(1 + 4x)2.4
= 24x (1 + 4x)3(3x2 – 1)3 + 12 (3x2 – 1)4(1 + 4x)2
= 12 (1 + 4x)2(3x2 – 1)3 [2x (1 + 4x) + (3x2 – 1)]
= 12 (1 + 4x)2(3x2 – 1)3 [2x + 8x2 + 3x2 – 1]
= 12 (1 + 4x)2(3x2 – 1)3 [11x2 + 2x – 1]
Soalan 8:
Penyelesaian:
Soalan 9:
Penyelesaian:
Soalan 10:
Penyelesaian:
Bab 9 Pembezaan
9.8 Pembezaan, SPM Praktis (Kertas 2)
Soalan 3:
Lengkung y = x3 – 6x2 + 9x + 3 melalui titik P (2, 5) dan mempunyai dua titik pusingan A (3, 3) dan B.
Cari
(a) kecerunan lengkung itu pada P.
(b) persamaan normal kepada lengkung itu pada P.
(c) koordinat B dan menentukan sama ada B adalah titik maksimum atau titik minimum.
Penyelesaian:
(a)
y = x3 – 6x2 + 9x + 3
dy/dx = 3x2 – 12x + 9
di titik P (2, 5),
dy/dx = 3(2)2 – 12(2) + 9 = –3
Kecerunan lengung pada titik P = –3.
(b)
Kecerunan normal pada titik P = ⅓
persamaan normal pada P (2, 5):
y – y1 = m (x - x1)
y – 5 = ⅓ (x– 2)
3y – 15 = x – 2
3y = x + 13
(c)
Pada titik pusingan dy/dx= 0.
3x2 – 12x + 9 = 0
x2 – 4x + 3 = 0
(x – 1)( x – 3) = 0
x – 1 = 0 atau x – 3 = 0
x = 1 atau x = 3 (titik A)
Pada titik B:
x = 1
y = (1)3– 6(1)2 + 9(1) + 3 = 7
Maka, koordinat B = (1, 7)
Soalan 4:
Rajah di atas menunjukkan sebuah kon dengan diameter 0.8m dan tinggi 0.6m. Air dituang ke dalam kon dengan kadar tetap 0.02m3s-1. Cari kadar perubahan tinggi paras air pada ketika tinggi parasnya ialah 0.5m.
Penyelesaian:
Kadar perubahan tinggi paras air pada ketika tinggi parasnya ialah 0.5m =
Katakan,
h = tinggi paras air
j = jejari permukaan air
I = isipadu air
Bab 9 Pembezaan
9.7 Pembezaan, SPM Praktis (Kertas 1)
Soalan 1:
Bezakan ungkapan 2x (4x2 + 2x - 5) terhadap x.
Penyelesaian:
2x (4x2 + 2x – 5) = 8x3 + 4x2– 10x
d/dx (8x3 + 4x2 – 10x)
= 24x + 8x –10
Soalan 2:
Penyelesaian:
Soalan 3:
Penyelesaian:
Soalan 4:
Penyelesaian:
(a)
(b)
Soalan 5:
Penyelesaian: