Quadratic Equations, SPM Practice (Paper 2)



Question 2:
Given α and β are two roots of the quadratic equation (2x + 5)(x + 1) + p = 0 where αβ = 3 and p is a constant.
Find the value p, α and of β.

Solutions:
(2x + 5)(x + 1) + p = 0
2x2 + 2x + 5x + 5 + p = 0
2x2 + 7x + 5 + p = 0
*Compare with, x2– (sum of roots)x + product of roots = 0
x2+72x+5+p2=0divide both sides with 2
Product of roots, αβ = 3
5+p2=3  
5 + p = 6
p = 1

Sum of roots = 72  
  α+β=72  (1)and αβ=3   (2)from (2), β=3α   (3)Substitute (3) into (1),α+3α=72  

2+ 6 = 7α ← (multiply both sides with 2α)
2+ 7α + 6 = 0
(2α + 3)(α + 2) = 0
2α + 3 = 0   or α + 2 = 0
α=− 3 2    α = –2

Substitute α=32 into (3),β=332=3(23)=2

Substitute α = –2 into (3),
β=32