Long Questions (Question 2)


Question 2:
In the diagram, PRS and QRT are straight lines. Given is the midpoint of PS and
QR : RT = 1 : 3, Find
(a) the coordinates of R,
(b) the coordinates of T,
(c) the coordinates of the point of intersection between lines PQ and ST produced.


Solution:
(a)
Given R is the midpoint of PS.
R=(3+72,2+62)R=(5, 4)

(b)
QR:RT=1:3Lets coordinates of T=(x, y)((1)(x)+(3)(4)1+3,(1)(y)+(3)(5)1+3)=(5, 4)x+124=5x+12=20x=8y+154=4y+15=16y=1T=(8, 1)

(c)
Gradient of PQ=5243=3Equation of PQ,y2=3(x3)y2=3x9y=3x7(1)Gradient of ST=6178=5Equation of ST,y1=5(x8)y1=5x+40y=5x+41(2)
 
Substitute (1) into (2),
 3x – 7 = –5x + 41
 8x = 48
 x = 6

 From (1),
 y = 3(6) – 7 = 11 

The coordinates of the point of intersection between lines PQ and ST = (6, 11).