Question 2:
Given that →AB=(1014),→OB=(46) and →CD=(m7) , find
(a) the coordinates of A,
(b) the unit vector in the direction of →OA .
(c) the value of m if CD is parallel to AB .
Solution:
(a)
→AB=→AO+→OB(1014)=(xy)+(46)(xy)=(1014)−(46)→AO=(68)→OA=(−6−8)A=(−6,−8)
(b)
|→OA|=√(−6)2+(−8)2|→OA|=√100=10the unit vector in the direction of →OA=→OA|→OA|=(−6−8)10=110(−6−8)=(−35−45)
(c)
Given →CD parallel →AB∴
Given that →AB=(1014),→OB=(46) and →CD=(m7) , find
(a) the coordinates of A,
(b) the unit vector in the direction of →OA .
(c) the value of m if CD is parallel to AB .
Solution:
(a)
→AB=→AO+→OB(1014)=(xy)+(46)(xy)=(1014)−(46)→AO=(68)→OA=(−6−8)A=(−6,−8)
(b)
|→OA|=√(−6)2+(−8)2|→OA|=√100=10the unit vector in the direction of →OA=→OA|→OA|=(−6−8)10=110(−6−8)=(−35−45)
(c)
Given →CD parallel →AB∴