Question 3:
Solution:
(a)(i)
→QS=→QP+→PS→QS=−20x˜+32y˜←Given →PT=14→PS→PS=4→PT=4(8y˜)=32y˜
(a)(ii)
→TR=→TS+→SR→TR=34→PS+25x˜−24y˜→TR=34(32y˜)+25x˜−24y˜→TR=24y˜+25x˜−24y˜→TR=25x˜
(b)
→QU=→QP+→PT+→TU→QU=−20x˜+8y˜+35(25x˜)←Given→TU=35→TR→QU=−20x˜+8y˜+15x˜→QU=−5x˜+8y˜From (a)(i) →QS=−20x˜+32y˜→QS→QU=−20x˜+32y˜−5x˜+8y˜→QS→QU=4(−5x˜+8y˜)(−5x˜+8y˜)→QS→QU=4→QS=4→QU∴
(c)
In diagram below, PQRS is a quadrilateral. PTS and TUR are straight lines.
It is given that
→PQ=20x˜, →PT=8y˜, →SR=25x˜−24y˜, →PT=14→PS and →TU=35→TR
(a) Express in terms of
x˜
and/or
y˜
:
(i)
→QS
(ii) →TR
(b) Show that the points Q, U and S are collinear.
(ii) →TR
(b) Show that the points Q, U and S are collinear.
(c) If
|x˜|
= 2 and
|y˜|
= 3, find
|→QS|
Solution:
(a)(i)
→QS=→QP+→PS→QS=−20x˜+32y˜←Given →PT=14→PS→PS=4→PT=4(8y˜)=32y˜
(a)(ii)
→TR=→TS+→SR→TR=34→PS+25x˜−24y˜→TR=34(32y˜)+25x˜−24y˜→TR=24y˜+25x˜−24y˜→TR=25x˜
(b)
→QU=→QP+→PT+→TU→QU=−20x˜+8y˜+35(25x˜)←Given→TU=35→TR→QU=−20x˜+8y˜+15x˜→QU=−5x˜+8y˜From (a)(i) →QS=−20x˜+32y˜→QS→QU=−20x˜+32y˜−5x˜+8y˜→QS→QU=4(−5x˜+8y˜)(−5x˜+8y˜)→QS→QU=4→QS=4→QU∴
(c)