Example 1:
(b)2(−109−4)−4(−223−6)−13(−9−3−615)
Solution:
(a)3(1−4−32)+2(−313−4)=(3×13×(−4)3×(−3)3×2)+(2×(−3)2×12×32×(−4))=(3−12−96)+(−626−8)=(3+(−6)−12+2−9+66−(−8))=(−3−10−314)
(b)2(−109−4)−4(−223−6)−13(−9−3−615)=(−2018−8)−(−8812−24)−(13×(−9)13×(−3)13×(−6)13×15)=(−2018−8)−(−8812−24)−(−3−1−25)=(−2−(−8)−(−3)0−8−(−1)18−12−(−2)−8−(−24)−5)=(9−7811)
Express the following as single matrix.
(a)3(1−4−32)+2(−313−4)
(b)2(−109−4)−4(−223−6)−13(−9−3−615)
Solution:
(a)3(1−4−32)+2(−313−4)=(3×13×(−4)3×(−3)3×2)+(2×(−3)2×12×32×(−4))=(3−12−96)+(−626−8)=(3+(−6)−12+2−9+66−(−8))=(−3−10−314)
(b)2(−109−4)−4(−223−6)−13(−9−3−615)=(−2018−8)−(−8812−24)−(13×(−9)13×(−3)13×(−6)13×15)=(−2018−8)−(−8812−24)−(−3−1−25)=(−2−(−8)−(−3)0−8−(−1)18−12−(−2)−8−(−24)−5)=(9−7811)