Short Question 11 – 14


Question 11:
Prove the identity cos 2 x 1sinx =1+sinx

Solution:

LHS = cos 2 x 1sinx = 1 sin 2 x 1sinx sin 2 x+ cos 2 x=1 = ( 1+sinx )( 1sinx ) 1sinx =1+sinx =RHS Proven



Question 12:
Prove the identity sin 2 x cos 2 x= tan 2 x1 tan 2 x+1

Solution:

RHS = tan 2 x1 tan 2 x+1 = sin 2 x cos 2 x 1 sin 2 x cos 2 x +1 tanx= sinx cosx = sin 2 x cos 2 x cos 2 x sin 2 x+ cos 2 x cos 2 x = sin 2 x cos 2 x sin 2 x+ cos 2 x = sin 2 x cos 2 x sin 2 x+ cos 2 x=1 =LHS Proven


Question 13:
Prove the identity tan 2 θ sin 2 θ= tan 2 θ sin 2 θ

Solution:

LHS = tan 2 θ sin 2 θ = sin 2 θ cos 2 θ sin 2 θ = sin 2 θ sin 2 θ cos 2 θ cos 2 θ = sin 2 θ( 1 cos 2 θ ) cos 2 θ = sin 2 θ sin 2 θ cos 2 θ =( sin 2 θ cos 2 θ )( sin 2 θ ) = tan 2 θ sin 2 θ =RHS Proven



Question 14:
Prove the identity cosec 2 θ ( sec 2 θ tan 2 θ )1= cot 2 θ

Solution:

LHS = cosec 2 θ ( sec 2 θ tan 2 θ )1 = cosec 2 θ ( 1 )1 tan 2 θ+1= sec 2 θ sec 2 θ tan 2 θ=1 = cosec 2 θ1 = cot 2 θ 1+ cot 2 θ=cose c 2 θ cose c 2 θ1= cot 2 θ =RHS Proven


5.6b Solving Trigonometric Equation (Factorization)

5.6b Solving Trigonometric Equation (Factorization)
 
Example:
Find all the angles that satisfy each of the following equations for £ £ 360°.
(a)  cot x = 2 cos x
(b)  3 sec x = 4 cos x  
(c)  16 tan x = cot x

Solution:
(a)
cot x = 2 cos x cos x sin x = 2 cos x cos x = 2 cos x sin x cos x + 2 sin x cos x = 0 cos x ( 1 + 2 sin x ) = 0 cos x = 0 x = 90 , 270 1 + 2 sin x = 0 sin x = 1 2 Basic = 3 0 x = ( 180 + 30 ) , ( 360 30 ) x = 210 , 330 x = 90 , 210 , 270 , 330

(b)
3 sec x = 4 cos x 3 cos x = 4 cos x 3 = 4 cos 2 x cos 2 x = 3 4 cos x = ± 3 2 Basic = 30 x = 30 , ( 180 30 ) , ( 180 + 30 ) , ( 360 30 ) x = 30 , 150 , 210 , 330

(c)
16 tan x = cot x 16 tan x = 1 tan x tan 2 x = 1 16 tan x = ± 1 4 Basic = 14.04 x = 14.04 , ( 180 14.04 ) , ( 180 + 14.04 ) , ( 360 14.04 ) x = 14.04 , 165.96 , 194.04 , 345.96


5.6c Solving Trigonometric Equation (Form Quadratic Equation In Sinx/ Cosx/ Tanx/ Cosecx/ Secx/ Cotx)

(C) Solving Trigonometric Equation (Form Quadratic Equation in sinx/ cosx/ tanx/ cosecx/ secx/ cotx)

Example:
Find all the angles between 0° and 360° that satisfy each of the following equations.
(a) 3 sin² x – 2 sin x – 1 = 0
(b)  2 sin x = cosec x + 1
(c) 5 sin² x = 2 (1 + cos x)
(d) 2 sec x = 1 + cos x
(e)  2 cot² x + 8 = 7 cosec x

Solution:
(a) 
3 sin² x – 2 sin x – 1 = 0
(3 sin x + 1)(sin x – 1) = 0
sin x = –, sin x = 1
sin x = –
basic angle = 19.47°
x = 180° + 19.47°, 360° – 19.47°
x = 199.47°, 340.53
sin x = 1, x = 90°
Hence x = 90°, 199.47°, 340.53°

(b)
 
2 sin x = cosec x + 1
2 sin x = 1 sin x + 1
2 sin ² x = 1 + sin x
2 sin ² x – sin x – 1 =0
(2 sin x + 1)(sin x – 1) = 0
sin x = –½, sin x = 1
sin x = –½
basic angle = 30°
x = 180° + 30°, 360° – 30°
x = 210°, 330°
sin x = 1, x = 90°
Hence x = 90°, 210°, 330°

(c)

5 sin² x = 2 (1 + cos x)
5 (1 – cos² x) = 2 + 2 cos x
5 – 5 cos² x – 2 – 2 cos x = 0
– 5 cos² x – 2 cos x + 3 = 0
5 cos² x + 2 cos x – 3 = 0
(5 cos x – 3)(cos x + 1) = 0
cos x = 3 5 , cos x = 1 cos x = 3 5
basic angle = 53.13°
x = 53.13°, 360° – 53.13°
x = 53.13°, 306.87°
cos x = – 1
x = 180°
Hence x = 53.13°, 180°, 306.87°

(d)
 
2 sec x = 1 + cos x
2 cos x = 1 + cos x
2 = cos x + cos² x
cos² x + cos x – 2 = 0
(cos x – 1)(cos x + 2) = 0
cos x = 1
x = 0°, 360°
cos x = –2 (not accepted)
Hence x = 0°, 360°

(e)
2 cot² x + 8 = 7 cosec x
2 (cosec² x – 1) + 8 = 7 cosec x
2 cosec² x – 2 – 7 cosec x + 8 = 0
2 cosec2x – 7 cosec x + 6 = 0
(2 cosec x – 3)(cosec x – 2) = 0
cos e c x = 3 2 , cos e c x = 2 sin x = 2 3 , sin x = 1 2 sin x = 2 3 basic angle = 41.81 x = 41.81 , 180 41.81 sin x = 1 2 basic angle = 30 x = 30 , 180 30 Hence x = 30 , 41.81 , 138.19 , 150


5.5.1 Proving Trigonometric Identities Using Addition Formula And Double Angle Formulae (Part 1)


Example 2:
Prove each of the following trigonometric identities.
(a) 1 + cos 2 x sin 2 x = cot x (b) cot A sec 2 A = cot A + tan 2 A (c) s i n x 1 c o s x = cot x 2

Solution:
(a)
L H S = 1 + cos 2 x sin 2 x = 1 + ( 2 cos 2 x 1 ) 2 sin x cos x = 2 cos 2 x 2 sin x cos x = cos x sin x = cot x = R H S (proven)


(b)
R H S = cot A + tan 2 A = cos A sin A + sin 2 A cos 2 A = cos A cos 2 A + sin A sin 2 A sin A cos 2 A = cos A ( cos 2 A sin 2 A ) + sin A ( 2 sin A cos A ) sin A cos 2 A = cos 3 A cos A sin 2 A + 2 sin 2 A cos A sin A cos 2 A = cos 3 A + cos A sin 2 A sin A cos 2 A = cos A ( cos 2 A + sin 2 A ) sin A cos 2 A = cos A sin A cos 2 A sin 2 A + cos 2 A = 1 = ( cos A sin A ) ( 1 cos 2 A ) = cot A sec 2 A


(c)
L H S = s i n x 1 c o s x = 2 s i n x 2 cos x 2 1 ( 1 2 s i n 2 x 2 ) sin x = 2 s i n x 2 cos x 2 , cos x = 1 2 sin 2 x 2 = 2 s i n x 2 cos x 2 2 s i n 2 x 2 = cos x 2 s i n x 2 = cot x 2 = R H S (proven)

5.6d Solving Trigonometric Equations (Involving Addition Formulae And Double Angle Formulae)

(D) Solving Trigonometric Equations (Involving Addition Formulae and Double Angle Formulae)

Example 1 (Addition Formulae):
Solve the following equation for 0o≤ 360o:
(a) sin ( x – 25o) = 3 sin ( x + 25o)
(b) 3 cos ( 2x + 10o) = 2   

Solution:  
(a)
sin ( x – 25o) = 3 sin ( x + 25o)   
sin x cos 25o – cos x sin 25o = 3 (sin x cos 25o + cos x sin 25o)
sin x cos 25o – cos x sin 25o = 3 sin x cos 25o + 3 cos x sin 25o
– sin x cos 25o = 4 cos x sin 25o
sin x cos x = 4 sin 25 2 cos 25
tan x = – 2 tan 25o
tan x = – 2 (0.4663)
tan x = – 0.9326
basic angle x = 43o
The reference angles of  x = 43o are in the second and fourth quadrants.
Hence, x = 180o – 43o, 360o – 43o
x = 137o , 317o

(b)
3 cos ( 2x + 10o) = 2   ← (Take the angles in the range of  0ox ≤ 720owhich in 2 complete revolutions)
cos ( 2x + 10o) = 
basic angle ( 2x + 10o) = 48.19o
2x + 10o = 48.19o, 360o – 48.19o , 360o + 48.19o, 720o – 48.19o  
2x + 10o = 48.19o, 311.81o , 408.19o, 671.81o
2x = 38.19o, 301.81o , 398.19o, 661.81o
x = 19.10o, 150.91o , 199.10o, 330.91o


Example 2 (Double Angle):
Find all the angles that satisfy the equation 5 cos 2+ 9 sin A = 7, 
0° < A < 360°.
 
Solution:  
5 cos 2A + 9 sin A = 7
5 (1 – 2 sin2A) + 9 sin A = 7   ← (substitution of cos 2A = 1 – 2 sin²A is used. Then the whole equation will be in terms of sin A)
5 – 10 sin2A + 9 sin A – 7 = 0
– 10 sin2A + 9 sin A – 2 = 0
10 sin2A – 9 sin A + 2 = 0
(2 sin A – 1)(5 sin A – 2) = 0 ← (Factorise)
sin A = ½ = 0.5    or   sin A= 2 5 = 0.4
When sin A = 0.5,   
Basic angle = 30º
A = 30º, 180º – 30º
A = 30º, 150º
When sin A = 0.4,   
Basic angle = 23.58º
A = 23.58º, 180º – 23.58º
A = 23.58º, 156.42º
Hence A = 23.58º, 30º, 150º, 156.42º.


Example 3 (Double Angle):
Find all the possible values of θ between 0 and 2π rad for the equation sin 2θ = sin θ
 
Solution:  
sin 2θ = sin θ
2 sin θ cos θ = sin θ   ←  (sin 2θ = 2 sin θ cos θ)
2 sin θ cos θ – sin θ = 0
sin θ (2 cos θ – 1) = 0   ← (Factorise)
sin θ = 0    or   2 cos θ – 1 = 0
When sin θ = 0
θ = 0, π, 2π
When 2 cos θ – 1= 0
cos θ = ½
θ = 1 3 π , 5 3 π Hence, θ = 0 , 1 3 π , π , 5 3 π , 2 π .


5.2.2 Six Trigonometric Functions of Any Angle

5.2b Six Trigonometric Functions of Any Angle 

(B) Special Angles

(1) Value of Special Angle 30° and 60°
 
  (a)sin 30 o = 1 2  (b)cos 30 o = 3 2 (c)tan 30 o = 1 3   (d)sin 60 o = 3 2   (e)cos 60 o = 1 2    (f)tan 60 o = 3  


(2) Value of Special Angle 45°
 
 
  (a)sin 45 o = 1 2   (b)cos 45 o = 1 2   (c)tan 45 o =1     


(3) Value of Special Angle 0°, 90°, 180°, 270°, 360°
 
(a) y = sin x
 



x
0o
90o
180o
270o
360o
sin
0
1
0
-1
0

(b) y = cos x





(c) y = tan x
 


x
0o
90o
180o
270o
360o
tan 
0
  ∞
0
  ∞
0

Long Question 1 & 2


Question 1:
(a) Sketch the graph of y = cos 2x for 0°  x  180°.
(b) Hence, by drawing a suitable straight line on the same axes, find the number of solutions satisfying the equation 2  sin 2 x=2 x 180 for 0°  x  180°.

Solution:

(a)(b)

2  sin 2 x=2 x 180 12  sin 2 x=1( 2 x 180 ) cos2x= x 180 1 y= x 180 1 x=0,  y=1 x=180,  y=0 Number of solutions = 2



Question 2:
(a) Sketch the graph of y= 3 2 cos2x for 0x 3 2 π.
(b) Hence, using the same axes, sketch a suitable straight line to find the number of solutions to the equation 4 3π xcos2x= 3 2  for 0x 3 2 π
State the number of solutions.

Solution:

(a)(b)



4 3π xcos2x= 3 2 cos2x= 4 3π x 3 2 3 2 cos2x= 3 2 ( 4 3π x 3 2 ) y= 2 π x 9 4 To sketch the graph of y= 2 π x 9 4 x=0, y= 9 4 x= 3π 2 , y= 3 4 Number of solutions  =Number of intersection points = 3

5.5 Formulae of sin (A ± B), cos (A ± B), tan (A ± B), sin 2A, cos 2A, tan 2A


5.5 Formulae of sin (A ± B), cos (A ± B), tan (A ± B), sin 2A, cos 2A, tan 2A

(A) Compound Angles Formulae:
sin ( A ± B ) = sin A cos B ± cos A sin B cos ( A ± B ) = cos A cos B sin A sin B tan ( A ± B ) = tan A ± tan B 1 tan A tan B


(B) Double Angle Formulae:

  • sin 2A = 2 sin A cos A
  • cos 2A = cos2 A – sin2 A
  • cos 2A = 2 cos2 A – 1
  • cos 2A = 1 – 2 sin2 A
  • tan 2 A = 2 tan A 1 tan 2 A   

(C) Half Angle Formulae:
   sinA=2sin A 2 cos A 2    cosA= sin 2 A 2 cos 2 A 2      cosA=2 cos 2 A 2 1   cosA=12 cos 2 A 2    tanA= 2tan A 2 1 tan 2 A 2


5.5.1 Proving Trigonometric Identities using Addition Formula and Double Angle Formulae

Example 1:
Prove each of the following trigonometric identities.
(a)  sin( A+B )sin( AB ) cosAcosB =2tanB (b)  cos( A+B ) sinAcosB =cotAtanB (c) tan( A+ 45 o )= sinA+cosA cosAsinA

Solution:
(a)
LHS = sin( A+B )sin( AB ) cosAcosB = ( sinAcosB+cosAsinB )( sinAcosBcosAsinB ) cosAcosB = 2 cosA sinB cosA cosB = 2sinB cosB =2tanB=RHS (proven)


(b)
L H S = cos ( A + B ) sin A cos B = cos A cos B sin A sin B sin A cos B = cos A cos B sin A cos B sin A sin B sin A cos B = cos A sin A sin B cos B = cot A tan B = R H S (proven)  


(c)
L H S = tan ( A + 45 o ) = t a n A + tan 45 o 1 t a n A tan 45 o = t a n A + 1 1 t a n A tan 45 o = 1 = sin A cos A + 1 1 sin A cos A = sin A + cos A cos A × cos A cos A sin A = sin A + cos A cos A sin A = R H S (proven)

Short Question 15 – 18


Question 15:
Prove the identity 2 cos 2 A + 1 = s e c 2 A

Solution:
LHS = 2 cos 2 A + 1 = 2 ( 2 cos 2 A 1 ) + 1 cos 2 A = 2 cos 2 A 1 = 2 2 cos 2 A = 1 cos 2 A = s e c 2 A = RHS Proven
 


Question 16:
Prove the identity 2 tan A 2 s e c 2 A = tan 2 A

Solution:
LHS = 2 tan A 2 s e c 2 A = 2 tan A 2 ( tan 2 A + 1 ) tan 2 A + 1 = s e c 2 A = 2 tan A 1 tan 2 A = tan 2 A = RHS Proven



Question 17:
Prove the identity tan x + cot x = 2 cos e c 2 x

Solution:
LHS = tan x + cot x = sin x cos x + cos x sin x = sin 2 x + cos 2 x cos x sin x = 1 cos x sin x sin 2 x + cos 2 x = 1 = 1 1 2 sin 2 x sin 2 x = 2 sin x cos x 1 2 sin 2 x = sin x cos x = 2 sin 2 x = 2 ( 1 sin 2 x ) = 2 cos e c 2 x = RHS Proven
 


Question 18:
Prove the identity cos x sin 2 x cos 2 x + sin x 1 = 1 tan x

Solution:
LHS = cos x sin 2 x cos 2 x + sin x 1 = cos x 2 sin x cos x ( 1 2 sin 2 x ) + sin x 1 cos 2 x = 1 2 sin 2 x = cos x ( 1 2 sin x ) sin x 2 sin 2 x = cos x ( 1 2 sin x ) sin x ( 1 2 sin x ) = cos x sin x = cot x = 1 tan x = RHS Proven

5.2.1 Six Trigonometric Functions of Any Angle


5.2a Six Trigonometric Functions of Any Angle 

(A) The definition of sin, cos, tan, cosec, sec and cot


1. Let P (x, y) be any point on the circumference of the circle with centre O and of radius r. Based on ∆ OPQ in the above diagram,



2. The definitions of tangent, cotangent, secant and cosecant of any angle are:





3. The relations of the trigonometric ratio of an angle θ with its complementary angle (90oθ) are:


For examples:
(a) sin 75= cos (90o – 75o) = cos 15o
(b) tan 50= cot (90o – 50o) = cot 40o
(c) sec 25o= cosec (90o – 25o) = cosec 65o



4. The trigonometric ratios of any negative angle (–θ) are:



  • A negative angle is an angle measured in a clockwise direction from the positive x-axis.
  • For example, – 60ois equivalent to 300o (360o – 60o).

Example:
Express each of the following trigonometric functions in terms of the trigonometric ratios of acute angles. Hence, find each value using a calculator.
(a) cos (– 325o)
(b) tan (– 124o)
(c) sin (– 115o)

Solution:
(a)
cos (– 325o)
= cos 325o  ← {The formula cos (–θ) = cos θ is used}
= cos (360o– 325o)  ← {At fourth quadrant, cos is positive}
= cos 35o
= 0.8192

(b) 
tan (– 124o)
= – tan 124o   ← {The formula tan (–θ) = – tan θ is used}
= – [– tan (180o– 124o)]  ← {At second quadrant, tan is negative}
= tan 56o
= 1.483

(c)
sin (– 115o)
= – sin 115o   ← {The formula sin (–θ) = – sin θ is used}
= – sin (180o– 115o)  ← {At second quadrant, sin is positive}
= – sin 65o
= – 0.9063