Question 5 (7 marks):
It is given that the equation of a curve is y=5x2.
(a) Find the value of dydx when x = 3.
(b) Hence, estimate the value of 5(2.98)2.
Solution:
(a)
y=5x2=5x−2dydx=−10x−3=−10x3When x=3dydx=−1033=−1027
(b)
δx=2.98−3=−0.02δy=dydx.δx=−1027×(−0.02)=0.007407Values of 5(2.98)2=y+δy=5x2+(0.007407)=532+(0.007407)=0.56296
It is given that the equation of a curve is y=5x2.
(a) Find the value of dydx when x = 3.
(b) Hence, estimate the value of 5(2.98)2.
Solution:
(a)
y=5x2=5x−2dydx=−10x−3=−10x3When x=3dydx=−1033=−1027
(b)
δx=2.98−3=−0.02δy=dydx.δx=−1027×(−0.02)=0.007407Values of 5(2.98)2=y+δy=5x2+(0.007407)=532+(0.007407)=0.56296