9.7 Second-Order Differentiation, Turning Points, Maximum and Minimum Points (Examples)


Example 1 (Maximum Value of Quadratic Function)
Given that y = 3x (4 – x), calculate
(a) the value of x when y is a maximum,
(b) the maximum value of y.

Solution:
(a)
y = 3 x ( 4 x ) y = 12 x 3 x 2 d y d x = 12 6 x When  y  is maximum,  d y d x = 0 0 = 12 6 x x = 2

(b) 
y = 12 x 3 x 2 When  x = 2 , y = 12 ( 2 ) 3 ( 2 ) 2 y = 12  

Example 2 (Determine the Turning Points and Second Derivative Test)
Find the coordinates of the turning points on the curve y = 2x3 + 3x2 – 12x + 7 and determine the nature of these turning points.

Solution:
y = 2 x 3 + 3 x 2 12 x + 7 d y d x = 6 x 2 + 6 x 12 At turning point,  d y d x = 0
6x2 + 6x – 12 = 0
x2 + x – 2 = 0
(x – 1) (x + 2) = 0
x = 1 or x = –2

When x = 1
y = 2(1)3 + 3(1)2 – 12(11) + 7
y = 0
(1, 0) is a turning point.

When x = –2
y = 2(–2)3 + 3(–2)2 – 12(–2) + 7
y = 27
(–2, 27) is a turning point.

d 2 y d x 2 = 12 x + 6 When  x = 1 , d 2 y d x 2 = 12 ( 1 ) + 6 = 18 > 0  (positive)

Hence, the turning point (1, 0) is a minimum point.

When  x = 2 , d 2 y d x 2 = 12 ( 2 ) + 6 = 18 < 0  (negative)

Hence, the turning point (–2, 27) is a maximum point.

9.2.1 First Derivative for Polynomial Function (Examples)

Example:
Find d y d x for each of the following functions:
(a) y = 12
(b) y = x4
(c) y = 3x
(d) y = 5x3
(e)  y = 1 x (f)  y = 2 x 4 (g)  y = 2 5 x 2 (h)  y = 3 x (i)  y = 4 x 3

Solution:
(a) 
= 12
  d y d x = 0
   
(b) 
= x4
  d y d x = 4x3

(c) 
= 3x
  d y d x = 3

(d) 
= 5x3
  d y d x = 3(5x2) = 15x2


(e)

y = 1 x = x 1 d y d x = x 1 1 = 1 x 2

(f)

y = 2 x 4 = 2 x 4 d y d x = 4 ( 2 x 4 1 ) = 8 x 5 = 8 x 5

(g)

y = 2 5 x 2 = 2 x 2 5 d y d x = 2 ( 2 x 2 1 5 ) = 4 x 3 5 = 4 5 x 3

(h)

y = 3 x = 3 ( x ) 1 2 d y d x = 1 2 ( 3 x 1 2 1 ) = 3 2 x 1 2 = 3 2 x

(i)
y = 4 x 3 = 4 ( x 3 ) 1 2 = 4 x 3 2 d y d x = 3 2 ( 4 x 3 2 1 ) = 6 x 1 2 = 6 x

Short Questions (Question 26 & 27)


Question 26 (3 marks):
Find the value of
( a )  lim x1 ( 7 x 2 ), ( b ) f''( 2 ) if f'( x )=2 x 3 4x+3.

Solution:
(a)
lim x1 ( 7 x 2 ) =7 ( 1 ) 2 =6

(b)
 f'( x )=2 x 3 4x+3 f''( x )=6 x 2 4 f''( 2 )=6 ( 2 ) 2 4   =244   =20



Question 27 (4 marks):
It is given that L = 4t t2 and x = 3 + 6t.
(a) Express dL dx in terms of t.
(b) Find the small change in x, when L changes from 3 to 3.4 at the instant t = 1.

Solution:
(a)
Given L=4t t 2  and x=3+6t L=4t t 2 dL dt =42t x=3+6t dx dt =6 dL dx = dL dt × dt dx dL dx =( 42t )× 1 6 = 42t 6 = 2t 3


(b)
δL=3.43=0.4 δL δx dL dx δx=δL÷ δL δx δx=δL× δx δL =0.4× 3 2t = 2 5 × 3 2t = 6 5( 2t ) When t=1,  δx= 6 5( 21 ) = 6 5

Long Questions (Question 5)


Question 5 (7 marks):
It is given that the equation of a curve is y= 5 x 2 .  
(a) Find the value of dy dx when x = 3.
(b) Hence, estimate the value of 5 ( 2.98 ) 2 .  

Solution:
(a)
y= 5 x 2 =5 x 2 dy dx =10 x 3 = 10 x 3 When x=3 dy dx = 10 3 3 = 10 27


(b)
δx=2.983=0.02 δy= dy dx .δx = 10 27 ×( 0.02 ) =0.007407 Values of  5 ( 2.98 ) 2 =y+δy = 5 x 2 +( 0.007407 ) = 5 3 2 +( 0.007407 ) =0.56296


Long Questions (Question 4)


Question 4 (6 marks):
Diagram shows the front view of a part of a roller coaster track in a miniature park.

The curve part of the track of the roller coaster is represented by an equation y= 1 64 x 3 3 16 x 2 , with point A as the region.
Find the shortest vertical distance, in m, from the track to ground level.

Solution:
y= 1 64 x 3 3 16 x 2  ............... ( 1 ) dy dx =3( 1 64 ) x 2 2( 3 16 ) x 1 = 3 64 x 2 3 8 x At turning point,  dy dx =0 3 64 x 2 3 8 x=0 x( 3 64 x 3 8 )=0 x=0  or 3 64 x 3 8 =0 3 64 x= 3 8 x= 3 8 × 64 3 x=8 Substitute values of x into equation (1): When x=0, y= 1 64 ( 0 ) 3 3 16 ( 0 ) 2 y=0 When x=8, y= 1 64 ( 8 ) 3 3 16 ( 8 ) 2 y=4 Thus, turning points : ( 0, 0 ) and ( 8,4 )

dy dx = 3 64 x 2 3 8 x d 2 y d x 2 =2( 3 64 )x 3 8   = 3 32 x 3 8 When x=0, d 2 y d x 2 = 3 32 ( 0 ) 3 8   = 3 8 ( <0 ) ( 0, 0 ) is maximum point. When x=8, d 2 y d x 2 = 3 32 ( 8 ) 3 8   = 3 8 ( >0 ) ( 8,4 ) is minimum point. Shortest vertical distance between track  and ground level is at the minimum point. Shortest vertical distance =54 =1 m


Short Questions (Question 17 – 19)


Question 17:

In the diagram above, the straight line PR is normal to the curve   y = x 2 2 + 1 at Q. Find the value of k.

Solution:
y = x 2 2 + 1 d y d x = x At point  Q ,   x -coordinate = 2 , Gradient of the curve,  d y d x = 2 Hence, gradient of normal to the curve,  P R = 1 2 3 0 2 k = 1 2 6 = 2 + k k = 8



Question 18:
The normal to the curve y = x2 + 3x at the point P is parallel to the straight line 
y = x + 12. Find the equation of the normal to the curve at the point P.

Solution:
Given normal to the curve at point P is parallel to the straight line y = –x + 12.
Hence, gradient of normal to the curve = –1.
As a result, gradient of tangent to the curve = 1

y = x2 + 3x
d y d x = 2x + 3
2x + 3 = 1
2x = –2
x = –1
y = (–1)2+ 3(–1)
y = –2
Point P = (–1, –2).

Equation of the normal to the curve at point P is,
y – (–2) = –1 (x – (–1))
y + 2 = – x – 1
y = – x– 3




Question 19:
Given that   y = 3 4 x 2 , find the approximate change in x which will cause y to decrease from 48 to 47.7.

Solution:
y = 3 4 x 2 d y d x = ( 2 ) 3 4 x = 3 2 x δ y = 47.7 48 = 0.3 Approximate change in  x  to  y δ x δ y d x d y δ x = d x d y × δ y δ x = 2 3 x × ( 0.3 ) δ x = 2 3 ( 8 ) × ( 0.3 ) y = 48 3 4 x 2 = 48 x 2 = 64 x = 8 δ x = 0.025

Short Questions (Question 8 – 10)


Question 8:
Find d s d t for each of the following functions.
( a )   s = ( t 3 t ) 2 ( b )   s = ( t + 1 ) ( 3 5 t ) t 2

Solution:
(a)
s = ( t 3 t ) 2 s = ( t 3 t ) ( t 3 t ) s = t 2 6 + 9 t 2 s = t 2 6 + 9 t 2 d s d t = 2 t 18 t 3 = 2 t 18 t 3

(b)
s = ( t + 1 ) ( 3 5 t ) t 2 s = 3 t 5 t 2 + 3 5 t t 2 = 5 t 2 2 t + 3 t 2 s = 5 2 t + 3 t 2 = 5 2 t 1 + 3 t 2 d s d t = 2 t 2 6 t 3 = 2 t 2 6 t 3



Question 9:
Given that  y = 1 5 x 4 x 3 , find  d y d x .

Solution:
d y d x = v d u d x u d v d x v 2 = ( x 3 ) . 20 x 3 ( 1 5 x 4 ) .1 ( x 3 ) 2 d y d x = 20 x 4 + 60 x 3 1 + 5 x 4 ( x 3 ) 2 d y d x = 15 x 4 + 60 x 3 1 ( x 3 ) 2



Question 10:
Given that  f ( x ) = ( x 2 3 ) 5 1 3 x , find  f ' ( 0 ) .

Solution:
f ( x ) = ( x 2 3 ) 5 1 3 x f ' ( x ) = v d u d x u d v d x v 2 = ( 1 3 x ) .5 ( x 2 3 ) 4 .2 x ( x 2 3 ) 5 . 3 ( 1 3 x ) 2 f ' ( x ) = 10 x ( 1 3 x ) ( x 2 3 ) 4 + 3 ( x 2 3 ) 5 ( 1 3 x ) 2 f ' ( x ) = ( x 2 3 ) 4 [ 10 x 30 x 2 + 3 ( x 2 3 ) ] ( 1 3 x ) 2 f ' ( x ) = ( x 2 3 ) 4 [ 27 x 2 + 10 x 9 ] ( 1 3 x ) 2 f ' ( 0 ) = ( 0 2 3 ) 4 [ 27 ( 0 ) 2 + 10 ( 0 ) 9 ] ( 1 3 ( 0 ) ) 2 f ' ( 0 ) = 81 × ( 9 ) 1 = 729

Long Questions (Question 2 & 3)


Question 2:
Given the equation of a curve is:
y = x2 (x – 3) + 1
(a) Find the gradient of the curve at the point where x = –1.
(b) Find the coordinates of the turning points.

Solution:
(a)
y= x 2 ( x3 )+1 y= x 3 3 x 2 +1 dy dx =3 x 2 6x When x=1 dy dx =3 ( 1 ) 2 6( 1 )      =9 Gradient of the curve is 9.

(b)
At turning points, dy dx =0
3x2 – 6x = 0
x2 – 2x = 0
x (x – 2) = 0
x = 0, 2

y = x2 (x – 3) + 1
When x = 0, y = 1
When x = 2,
y = 22 (2 – 3) + 1
y = 4 (–1) + 1 = –3
Therefore, coordinates of the turning points are (0, 1) and (2, –3).


Question 3:
It is given the equation of the curve is y = 2x (1 – x)4 and the curve pass through T(2, 4).
Find
(a) the gradient of the curve at point T.
(b) the equation of the normal to the curve at point T.

Solution:
(a)
y=2x ( 1x ) 4 dy dx =2x×4 ( 1x ) 3 ( 1 )+ ( 1x ) 4 ×2     =8x ( 1x ) 3 +2 ( 1x ) 4 At T( 2,4 ),x=2. dy dx =16( 1 )+2( 1 )     =16+2     =18

(b)
Equation of normal: y y 1 = 1 dy dx ( x x 1 ) y4= 1 18 ( x2 ) 18y72=x+2 x+18y=74

Long Questions (Question 1)


Question 1:
The curve y = x3 – 6x2 + 9x + 3 passes through the point P (2, 5) and has two turning points, A (3, 3) and B.
Find 
(a) the gradient of the curve at P.
(b) the equation of the normal to the curve at P.
(c) the coordinates of and determine whether B is a maximum or the minimum point.

Solution:
(a)
y = x3 – 6x2 + 9x + 3
dy/dx = 3x2– 12x + 9
At point P (2, 5),
dy/dx = 3(2)2 – 12(2) + 9 = –3

Gradient of the curve at point P = –3.

(b)
Gradient of normal at point P = 1/3
Equation of the normal at P (2, 5):
yy1 = m (x – x1)
y – 5 = 1/3 (x – 2)
3y – 15 = x – 2
3y = x + 13

(c) 
At turning point, dy/dx = 0.
3x2 – 12x + 9 = 0
x2 – 4x + 3 = 0
(x – 1)( x – 3) = 0
x – 1 = 0  or x – 3 = 0
x = 1  x = 3 (Point A)

Thus at point B:
x = 1
y = (1)3– 6(1)2 + 9(1) + 3 = 7

Thus, coordinates of = (1, 7)

when  x = 1 ,   d 2 y d x 2 = 6 x 12 d 2 y d x 2 = 6 ( 1 ) 12 d 2 y d x 2 = 6 < 0 Since  d 2 y d x 2 < 0 ,   B  is a maximum point .

Short Questions (Question 22 – 25)


Question 23:
Given that y = 15 x + 24 x 3 ,

(a) Find the value of d y d x when x = 2,
(b) Express in terms of k, the approximate change in when x changes from 2 to
  2 + k, where k is a small change.

Solution:
(a)
y = 15 x + 24 x 3 y = 15 x + 24 x 3 d y d x = 15 72 x 4 d y d x = 15 72 x 4 When  x = 2 d y d x = 15 72 2 4 = 10.5

(b)
Approximate change in  y  to  x  in terms of  k , δ y δ x d y d x δ y = d y d x × δ x δ y = 10.5 × ( 2 + k 2 ) δ y = 10.5 k



Question 24:
If the radius of a circle increases from 4 cm to 4.01 cm, find the approximate increase in the area.

Solution:
Area of circle,  A = π r 2 d A d r = 2 π r Approximate increase in the area to radius, δ A δ r d A d r δ A = d A d r × δ r δ A = ( 2 π r ) × ( 4.01 4 ) δ A = [ 2 π ( 4 ) ] × ( 0.01 ) δ A = 0.08 π  cm 2



Question 25:
Given that y =3t+ 5t2 and x = 5t 1.
(a) Find d y d x  in terms of x,
(b) If increases from 5 to 5.01, find the small increase in t.

Solution:
y = 3 t + 5 t 2 d y d t = 3 + 10 t x = 5 t 1 d x d t = 5

(a)
d y d x = d y d t × d t d x d y d x = ( 3 + 10 t ) × 1 5 d y d x = 3 + 10 ( x + 1 5 ) 5 x = 5 t 1 t = x + 1 5 d y d x = 3 + 2 x + 2 5 d y d x = 5 + 2 x 5

(b)
Small increase in  t  to  x , δ t = d t d x × δ x δ t = 1 5 × ( 5.01 5 ) δ t = 0.002