Question 26 (3 marks):
Find the value of
(a) limx→1(7−x2),(b) f''(2) if f'(x)=2x3−4x+3.
Solution:
(a)
limx→1(7−x2)=7−(1)2=6
(b)
f'(x)=2x3−4x+3f''(x)=6x2−4f''(2)=6(2)2−4 =24−4 =20
Find the value of
(a) limx→1(7−x2),(b) f''(2) if f'(x)=2x3−4x+3.
Solution:
(a)
limx→1(7−x2)=7−(1)2=6
(b)
f'(x)=2x3−4x+3f''(x)=6x2−4f''(2)=6(2)2−4 =24−4 =20
Question 27 (4 marks):
It is given that L = 4t – t2 and x = 3 + 6t.
(a) Express dLdx in terms of t.
(b) Find the small change in x, when L changes from 3 to 3.4 at the instant t = 1.
Solution:
(a)
Given L=4t−t2 and x=3+6tL=4t−t2dLdt=4−2tx=3+6tdxdt=6dLdx=dLdt×dtdxdLdx=(4−2t)×16=4−2t6=2−t3
(b)
δL=3.4−3=0.4δLδx≈dLdxδx=δL÷δLδxδx=δL×δxδL=0.4×32−t=25×32−t=65(2−t)When t=1, δx=65(2−1)=65
It is given that L = 4t – t2 and x = 3 + 6t.
(a) Express dLdx in terms of t.
(b) Find the small change in x, when L changes from 3 to 3.4 at the instant t = 1.
Solution:
(a)
Given L=4t−t2 and x=3+6tL=4t−t2dLdt=4−2tx=3+6tdxdt=6dLdx=dLdt×dtdxdLdx=(4−2t)×16=4−2t6=2−t3
(b)
δL=3.4−3=0.4δLδx≈dLdxδx=δL÷δLδxδx=δL×δxδL=0.4×32−t=25×32−t=65(2−t)When t=1, δx=65(2−1)=65