Short Question 5 – 7 Posted on April 22, 2020 by user Question 5: Given ∫ ( 6 x 2 +1 )dx=m x 3 +x +c, where m and c are constants, find (a) the value of m. (b) the value of c if ∫ ( 6 x 2 +1 )dx=13 when x=1. Solution: (a) ∫ ( 6 x 2 +1 )dx=m x 3 +x +c 6 x 3 3 +x+c=m x 3 +x+c 2 x 3 +x+c=m x 3 +x+c Compare the both sides, ∴ m=2 (b) ∫ ( 6 x 2 +1 )dx=13 when x=1. 2 ( 1 ) 3 +1+c=13 3+c=13 c=10 Question 6: It is given that ∫ 5 k g(x)dx=6 , and ∫ 5 k [ g( x )+2 ]dx =14, find the value of k. Solution: ∫ 5 k [ g( x )+2 ]dx =14 ∫ 5 k g( x )dx + ∫ 5 k 2dx =14 6+ [ 2x ] 5 k =14 2( k−5 )=8 k−5=4 k=9 Question 7: Given ∫ k 2 (4x+7)dx=28 , calculate the possible value of k. Solution: ∫ k 2 (4x+7)dx=28 [ 2 x 2 +7x ] k 2 =28 8+14−( 2 k 2 +7k )=28 22−2 k 2 −7k=28 2 k 2 +7k+6=0 ( 2k+3 )( k+2 )=0 k=− 3 2 or k=−2
Short Question 8 – 10 Posted on April 22, 2020 by user Question 8: Given y= 5x x 2 +1 and dy dx =g( x ), find the value of ∫ 0 3 2g( x )dx. Solution: Since dy dx =g( x ), thus y= ∫ g( x ) dx ∫ 0 3 2g( x )dx=2 ∫ 0 3 g( x )dx =2 [ y ] 0 3 =2 [ 5x x 2 +1 ] 0 3 =2[ 5( 3 ) 3 2 +1 −0 ] =2( 15 10 ) =3 Question 9: Find ∫ 5 k ( x+1 )dx, in terms of k. Solution: ∫ 5 k ( x+1 )dx=[ x 2 2 +x ] 5 k =( k 2 2 +k )−( 5 2 2 +5 ) = k 2 +2k 2 − 35 2 = k 2 +2k−35 2 Question 10: Given that= ∫ 2 5 g(x)dx=−2 . Find (a) the value of ∫ 5 2 g(x)dx, (b) the value of m if ∫ 2 5 [ g(x)+m( x ) ]dx=19 Solution: (a) ∫ 5 2 g(x)dx= − ∫ 2 5 g(x)dx =−( −2 ) =2 (b) ∫ 2 5 [ g(x)+m( x ) ]dx=19 ∫ 2 5 g(x)dx+m ∫ 2 5 xdx=19 −2+m [ x 2 2 ] 2 5 =19 m 2 [ x 2 ] 2 5 =21 m 2 [ 25−4 ]=21 21m=42 m=2
Short Question 11 – 13 Posted on April 22, 2020 by user Question 11: Given ∫ −2 3 g(x)dx=4 , and ∫ −2 3 h(x)dx=9 , find the value of (a) ∫ −2 3 5g(x)dx, (b) m if ∫ −2 3 [ g(x)+3h( x )+4m ]dx=12 Solution: (a) ∫ −2 3 5g(x)dx=5 ∫ −2 3 g(x)dx =5×4 =20 (b) ∫ −2 3 [ g(x)+3h( x )+4m ]dx=12 ∫ −2 3 g(x)dx+3 ∫ −2 3 h( x )dx+ ∫ −2 3 4mdx=12 4+3( 9 )+4m [ x ] −2 3 =12 4m[ 3−( −2 ) ]=−19 20m=−19 m=− 19 20 Question 12: (a) Find the value of ∫ −1 1 ( 3x+1 ) 3 dx. (b) Evaluate ∫ 3 4 1 2x−4 dx. Solution: a) ∫ −1 1 ( 3x+1 ) 3 dx=[ ( 3x+1 ) 4 4( 3 ) ] −1 1 = [ ( 3x+1 ) 4 12 ] −1 1 = 1 12 [ 4 4 − ( −2 ) 4 ] = 1 12 ( 256−16 ) =20 (b) ∫ 3 4 1 2x−4 dx= ∫ 3 4 1 ( 2x−4 ) 1 2 dx = ∫ 3 4 ( 2x−4 ) − 1 2 dx = [ ( 2x−4 ) − 1 2 +1 1 2 ( 2 ) ] 3 4 = [ 2x−4 ] 3 4 =[ 2( 4 )−4 − 2( 3 )−4 ] =2− 2 Question 13: Given that y= x 2 2x−1 , show that dy dx = 2x( x−1 ) ( 2x−1 ) 2 . Hence, evaluate ∫ −2 2 x( x−1 ) 4 ( 2x−1 ) 2 dx . Solution: y= x 2 2x−1 dy dx = ( 2x−1 )( 2x )−x( 2 ) ( 2x−1 ) 2 = 4 x 2 −2x−2 x 2 ( 2x−1 ) 2 = 2 x 2 −2x ( 2x−1 ) 2 = 2x( x−1 ) ( 2x−1 ) 2 ( shown ) ∫ −2 2 2x( x−1 ) ( 2x−1 ) 2 dx = [ x 2 2x−1 ] −2 2 1 8 ∫ −2 2 2x( x−1 ) ( 2x−1 ) 2 dx = 1 8 [ x 2 2x−1 ] −2 2 1 4 ∫ −2 2 x( x−1 ) ( 2x−1 ) 2 dx = 1 8 [ ( 2 2 2( 2 )−1 )−( ( −2 ) 2 2( −2 )−1 ) ] = 1 8 [ ( 4 3 )−( 4 −5 ) ] = 1 8 ( 32 15 ) = 4 15
Long Question 3 Posted on April 22, 2020 by user Question 3: The gradient function of a curve which passes through P(2, –14) is 6x² – 12x. Find (a) the equation of the curve, (b) the coordinates of the turning points of the curve and determine whether each of the turning points is a maximum or a minimum. Solution: (a) Given gradient function of a curve dy dx =6 x 2 −12x The equation of the curve, y= ∫ ( 6 x 2 −12x ) dx y= 6 x 3 3 − 12 x 2 2 +c y=2 x 3 −6 x 2 +c −14=2 ( 2 ) 3 −6 ( 2 ) 2 +c, at point P ( 2,−14 ) −14=−8+c c=−6 y=2 x 3 −6 x 2 −6 (b) dy dx =6 x 2 −12x At turning points, dy dx =0 6 x 2 −12x=0 6x( x−2 )=0 x=0, x=2 x=0, y=2 ( 0 ) 3 −6 ( 0 ) 2 −6=−6 x=2, y=2 ( 2 ) 3 −6 ( 2 ) 2 −6=−14 d 2 y d x 2 =12x−12 When x=0, d 2 y d x 2 =12( 0 )−12=−12 <0 ( 0,−6 ) is a maximum point. When x=2, d 2 y d x 2 =12( 2 )−12=12 >0 ( 2,−14 ) is a minimum point.
3.5 Integration as the Summation of Areas Posted on April 22, 2020 by user 3.5 Integration as the Summation of Areas (A) Area of the region between a Curve and the x-axis. Area of the shaded region; A = ∫ a b y d x (B) Area of the region between a curve and the y-axis. Area of the shaded region; A = ∫ a b x d y (C) Area of the region between a curve and a straight line. Area of the shaded region; A = ∫ a b f ( x ) d x − ∫ a b g ( x ) d x
3.2 Integration by Substitution Posted on April 22, 2020 by user 3.2 Integration by Substitution It is given that ∫ ( a x + b ) n d x , n ≠ − 1. (A) Using the Substitution method, Let u=ax+b Thus, du dx =a ∴dx= du a Example 1: ∫ ( 3x+5 ) 3 dx. Let u=3x+5 du dx =3 dx= du 3 ∫ ( 3x+5 ) 3 dx = ∫ u 3 du 3 ← substitute 3x+5=u and dx= du 3 = 1 3 ∫ u 3 du = 1 3 ( u 4 4 )+c = 1 3 ( ( 3x+5 ) 4 4 )+c ← substitute back u=3x+5 = ( 3x+5 ) 4 12 +c (B) Using Formula method ∫ ( a x + b ) n = ( a x + b ) n + 1 ( n + 1 ) a + c Hence, ∫ ( 3 x + 5 ) 3 d x = ( 3 x + 5 ) 4 4 ( 3 ) + c = ( 3 x + 5 ) 4 12 + c Example 2 (Formula method): ∫ ( a x + b ) n = ( a x + b ) n + 1 ( n + 1 ) a + c Hence, ∫ ( 3 x + 5 ) 3 d x = ( 3 x + 5 ) 4 4 ( 3 ) + c = ( 3 x + 5 ) 4 12 + c
Basic Integration Posted on April 22, 2020 by user 3.1 Integration as the Inverse of Differentiation, Integration of axn and integration of the Functions of the Sum/Difference of Algebraic Terms Type 1: ∫ a d x = a x + C Example ∫ 2 d x = 2 x + C Type 2: ∫ a x n d x = a x n + 1 n + 1 + C E x a m p l e 1 ∫ 2 x 3 d x = 2 x 4 4 + C = x 4 2 + C E x a m p l e 2 ∫ 2 3 x 5 d x = ∫ 2 3 x − 5 d x = 2 3 ( x − 4 − 4 ) + C = 2 3 ( x − 4 − 4 ) + C = x − 4 − 6 + C Type 3: ∫ ( u+v )dx= ∫ udx± ∫ vdx u and v are functions in x Example 1 ∫ 3 x 2 +2xdx= ∫ 3 x 2 dx+ ∫ 2xdx = 3 x 3 3 + 2 x 2 2 +C = 3 x 3 3 + 2 x 2 2 +C = x 3 + x 2 +C E x a m p l e 2 ∫ ( x + 2 ) ( 3 x + 1 ) d x = ∫ 3 x 2 + 7 x + 2 d x = ∫ 3 x 2 d x + ∫ 7 x d x + ∫ 2 d x = 3 x 3 3 + 7 x 2 2 + 2 x + C = x 3 + 7 x 2 2 + 2 x + C E x a m p l e 3 ∫ 3 x 3 + x 2 − x x d x = ∫ 3 x 2 + x − 1 d x = ∫ 3 x 2 d x + ∫ x d x − ∫ 1 d x = 3 x 3 3 + x 2 2 − x + C = x 3 + x 2 2 − x + C
Finding Equation Of A Curve From Its Gradient Function Posted on April 22, 2020 by user 3.3 Finding Equation of a Curve from its Gradient Function Example 1: Find the equation of the curve that has the gradient function d y d x = 2 x + 8 and passes through the point (2, 3). Solution: y = ∫ ( 2 x + 8 ) y = 2 x 2 2 + 8 x + C y = x2 + 8x + C 3 = 22 +8(2) + C (2, 3) C = –17 Hence, the equation of the curve is y = x2 + 8x – 17 Example 2: The gradient function of a curve is given by 2x – 4 and the curve has a minimum value of 3. Find the equation of the curve. Solution: At the point where a curve has a minimum value, d y d x = 0 d y d x = 0 2x – 4 = 0 x = 2 Therefore minimum point = (2, 3). d y d x = 2 x − 4 y = ∫ ( 2 x − 4 ) d x y = 2 x 2 2 − 4 x + C y = x 2 − 4 x + C When x = 2, y = 3. 3 = 22 – 4(2) + c c = 7 Hence, the equation of the curve is y = x2 – 4x + 7
Definite Integrals Posted on April 22, 2020 by user 3.4a Definite Integral of f(x) from x=a to x=b Example: Evaluate each of the following. (a) ∫ − 1 0 ( 3 x 2 − 2 x + 5 ) d x (b) ∫ 0 2 ( 2 x + 1 ) 3 d x Solution: (a) ∫ − 1 0 ( 3 x 2 − 2 x + 5 ) d x = [ 3 x 3 3 − 2 x 2 2 + 5 x ] − 1 0 = [ x 3 − x 2 + 5 x ] − 1 0 = 0 − [ ( − 1 ) 3 − ( − 1 ) 2 + 5 ( − 1 ) ] = 0 − ( − 1 − 1 − 5 ) = 7 (b) ∫ 0 2 ( 2 x + 1 ) 3 d x = [ ( 2 x + 1 ) 4 4 ( 2 ) ] 0 2 = [ ( 2 x + 1 ) 4 8 ] 0 2 = [ ( 2 ( 2 ) + 1 ) 4 8 ] − [ ( 2 ( 0 ) + 1 ) 4 8 ] = 625 8 − 1 8 = 78
Short Question 2 – 4 Posted on April 22, 2020 by user Question 2: Given that Given that ∫ 4 ( 1 + x ) 4 d x = m ( 1 + x ) n + c , find the values of m and n. Solution: ∫ 4 ( 1 + x ) 4 d x = m ( 1 + x ) n + c ∫ 4 ( 1 + x ) − 4 d x = m ( 1 + x ) n + c 4 ( 1 + x ) − 3 − 3 ( 1 ) + c = m ( 1 + x ) n + c − 4 3 ( 1 + x ) − 3 + c = m ( 1 + x ) n + c m = − 4 3 , n = − 3 Question 3: Given ∫ −1 2 2g(x)dx=4 , and ∫ −1 2 [ mx+3g( x ) ]dx =15. Find the value of constant m. Solution: ∫ − 1 2 [ m x + 3 g ( x ) ] d x = 15 ∫ − 1 2 m x d x + ∫ − 1 2 3 g ( x ) d x = 15 [ m x 2 2 ] − 1 2 + 3 ∫ − 1 2 g ( x ) d x = 15 [ m ( 2 ) 2 2 − m ( − 1 ) 2 2 ] + 3 2 ∫ − 1 2 2 g ( x ) d x = 15 2 m − 1 2 m + 3 2 ( 4 ) = 15 ← given ∫ − 1 2 2 g ( x ) d x = 4 3 2 m + 6 = 15 3 2 m = 9 m = 9 × 2 3 m = 6 Question 4: Given d d x ( 2 x 3 − x ) = g ( x ) , find ∫ 1 2 g ( x ) d x . Solution: Given d d x ( 2 x 3 − x ) = g ( x ) ∫ g ( x ) d x = 2 x 3 − x Thus, ∫ 1 2 g ( x ) d x = [ 2 x 3 − x ] 1 2 = 2 ( 2 ) 3 − 2 − 2 ( 1 ) 3 − 1 = 4 − 1 = 3