5.2a Laws of Logarithms (Example 2)

Example 2

Find the value of the following.
(a) log27+log212log221

(b) 3log105+2log102log105

(c) 2log103log103+log10313

(d) log33p+log33qlog3pq






5.2a Laws of Logarithms (Example 1)

Example 1

Express the following in term of logax   and logay  .
(a) loga3x
(b) logax5
(c) logay5
(d) logaxy3
(e) logax2y
(f) logaya2x3

Law of Logarithms







5.2a Laws of Logarithms


5.2a Laws of Logarithms

  Law 1:  logaxy=logax+logay  Example: log525x=log525+log5x  Beware!!  logax+logayloga(x+y)  

  Law 2:  loga(xy)=logaxlogay    Example: log5x25=log5xlog525  Beware!!  logaxylogaxlogay  

  Law 3:  logaxm=mlogax  Example: log5y5=5log5y  Beware!!  (logax)22logax  


5.2 Logarithms

5.2 Logarithms

N=axlogaN=x logaN=x is called the logarithmic form and N=ax is the index or exponential form.



Note:
  1. The logarithm of a negative number is not defined.
  2. log in the calculator denotes log10 or common logarithm.
  3. log10 may be written as lg.
  4. If the base is other than 10, the base should be specified, e.g. log381

5.1 Indices and Laws of Indices (Part 2)


5.1 Indices and Laws of Indices (Part 2)

(C) Fractional Indices
  a1n is a nth root of a.  a1n=na  amn is a nth root of am.  amn=nam

Example 1:
Find the value of the followings:
(a) 8112(b) 6413(c) 62514

Solution:
(a) 8112=81=9(b) 6413=364=4(c) 62514=4625=5

Example 2:
Find the value of the followings:
(a) 1632(b) (2764)23

Solution:
(a) 1632=(1612)3=43=64(b) (2764)23=(32764)2=(34)2=916



(D) Laws of Indices

  am×an=am+n  Example:  33×32  =33+2=35=243  


  am÷an=amn   or   aman=amn,a0    Example:  33÷32  =332=31=3  or  3332=332=31=3


  (am)n=amn  Example:  (73)4=73×4=712  


  (ab)n=anbn  Example:  (15)3=(5×3)3=23×33   


  (ab)n=anbn, b0  Example:  (35)4=3454=81625  

Indices and Laws of Indices (Part 1)


Positive Integral Indices
When a real number a is multiplied by itself n times, the result is the nth power of a.

Example:  5×5×5×5 = 5(5 to the power of 4)

In general, if a is any real number and n is a positive integer, then


The integer n is called the index or exponent and a is the base.



5.1 Indices and Laws of Indices (Part 1)
(A) Zero Indices
The zero index of any number is equal to one.

  a 0 = 1, where a ≠ 0

Example 1:
Find the value of the followings:
(a) 2500
(b) 0.5130
(c) (27)0(d) (11125)0

Solution:
(a) 2500 = 1
(b) 0.5130 = 1
(c) (27)0=1(d) (11125)0=1



(B) Negative Integral Indices

  an is a reciprocal of an.    an=1an

Example 2:
Find the value of the followings:
(a) 102 -1
(b)  –6 -3
(c) (13)4(d) (25)2(e) (25)4

Solution:
(a) 1021=1102(b) 63=163=1216(c) (13)4=(3)4=81(d) (25)2=(52)2=254(e) (25)4=(52)4=62516