Short Questions (Question 8 – 10)


Question 8:
Find d s d t for each of the following functions.
( a )   s = ( t 3 t ) 2 ( b )   s = ( t + 1 ) ( 3 5 t ) t 2

Solution:
(a)
s = ( t 3 t ) 2 s = ( t 3 t ) ( t 3 t ) s = t 2 6 + 9 t 2 s = t 2 6 + 9 t 2 d s d t = 2 t 18 t 3 = 2 t 18 t 3

(b)
s = ( t + 1 ) ( 3 5 t ) t 2 s = 3 t 5 t 2 + 3 5 t t 2 = 5 t 2 2 t + 3 t 2 s = 5 2 t + 3 t 2 = 5 2 t 1 + 3 t 2 d s d t = 2 t 2 6 t 3 = 2 t 2 6 t 3



Question 9:
Given that  y = 1 5 x 4 x 3 , find  d y d x .

Solution:
d y d x = v d u d x u d v d x v 2 = ( x 3 ) . 20 x 3 ( 1 5 x 4 ) .1 ( x 3 ) 2 d y d x = 20 x 4 + 60 x 3 1 + 5 x 4 ( x 3 ) 2 d y d x = 15 x 4 + 60 x 3 1 ( x 3 ) 2



Question 10:
Given that  f ( x ) = ( x 2 3 ) 5 1 3 x , find  f ' ( 0 ) .

Solution:
f ( x ) = ( x 2 3 ) 5 1 3 x f ' ( x ) = v d u d x u d v d x v 2 = ( 1 3 x ) .5 ( x 2 3 ) 4 .2 x ( x 2 3 ) 5 . 3 ( 1 3 x ) 2 f ' ( x ) = 10 x ( 1 3 x ) ( x 2 3 ) 4 + 3 ( x 2 3 ) 5 ( 1 3 x ) 2 f ' ( x ) = ( x 2 3 ) 4 [ 10 x 30 x 2 + 3 ( x 2 3 ) ] ( 1 3 x ) 2 f ' ( x ) = ( x 2 3 ) 4 [ 27 x 2 + 10 x 9 ] ( 1 3 x ) 2 f ' ( 0 ) = ( 0 2 3 ) 4 [ 27 ( 0 ) 2 + 10 ( 0 ) 9 ] ( 1 3 ( 0 ) ) 2 f ' ( 0 ) = 81 × ( 9 ) 1 = 729

Long Questions (Question 8)

Question 8:

In the diagram above, AXB is an arc of a circle centre O and radius 10 cm with  ∠AOB = 0.82 radian. AYB is an arc of a circle centre P and radius 5 cm with  ∠APB = θ.
Calculate:
(a) the length of the chord AB,
(b) the value of θ in radians,
(c) the difference in length between the arcs AYB and AXB.



Solution:
(a)
1 2 AB=sin0.41×10( Change the calculator to Rad mode ) 1 2 AB=3.99 The length of chord AB=3.99×2=7.98 cm.

(b)
Let  1 2 θ=α, θ=2α sinα= 3.99 5 α=0.924 rad θ=0.924×2=1.848 radian.

(c)
Using s =
Arcs AXB = 10 × 0.82 = 8.2 cm
Arcs AYB = 5 × 1.848 = 9.24 cm

Difference in length between the arcs AYB and AXB
= 9.24 – 8.2
= 1.04 cm

Long Questions (Question 7)


Question 7:
Diagram below shows a circle PQRT, centre and radius 5 cm. AQB is a tangent to the circle at Q. The straight lines, AO and BO, intersect the circle at P and R respectively. 
OPQR is a rhombus. ACB is an arc of a circle at centre O.
Calculate
(a) the angle x , in terms of π ,
(b) the length , in cm , of the arc ACB ,   
(c) the area, in cm2,of the shaded region.



Solution:
(a)
Rhombus has 4 equal sides, therefore OP = PQ = QR = OR = 5 cm
OR is radius to the circle, therefore OR = OQ = 5 cm

Triangles OQR and OQP are equilateral triangle,
Therefore,  ∠ QOR=  ∠QOP = 60o
 ∠ POR = 120o
x = 120o × π/180o
x = 2π/ 3 rad

(b) 
cos  ∠ AOQ= OQ / OA
cos 60o = 5 / OA
OA = 10 cm

Length of arc, ACB,
s = r θ
Arc ACB = (10) (2π / 3)
Arc ACB = 20.94 cm

(c)
Area of shaded region = 1 2 r 2 ( θsinθ ) ( change calculator to Rad mode ) = 1 2 ( 10 ) 2 ( 2π 3 sin 2π 3 ) =50( 2.0940.866 ) =61.40  cm 2

Long Questions (Question 6)


Question 6:
Diagram below shows a circle PQT with centre O and radius 7 cm.

QS
is a tangent to the circle at point Q and QSR is a quadrant of a circle with centre Q. Q is the midpoint of OR and QP is a chord. OQR and SOP are straight lines.
[Use π = 3.142]
Calculate
(a) angle θ, in radians,
(b) the perimeter, in cm ,of the shaded region,
(c) the area, in cm2 ,of the shaded region.


Solution:
(a)
OQ=QR=QS=7 cm tanθ=1  θ= 45 o    = 45 o × π 180 o    =0.7855 rad

(b)
Length of arc RS =7×( 0.7855×2 ) π rad= 180 o 45 o =0.7855 rad 90 o =0.7855 ×2 rad =7×1.571 =10.997 cm Length of arc QP =7×( 0.7855×3 ) =7×2.3565 =16.496 cm Length of chord QP = 7 2 + 7 2 2( 7 )( 7 )cos 135 o refer form 4 chapter 10 ( solution of triangle )for cosine rule = 167.30 =12.934 cm Perimeter of the shaded region =7+7+10.997+16.496+12.934 =54.427 cm

(c)
Area of shaded region =( 1 2 × 7 2 ×1.571 )+( 1 2 × 7 2 ×2.3565 ) ( 1 2 ×7×7×sin 135 o ) refer form 4 chapter 10 ( solution of triangle )for area rule =38.4895+57.734317.3241 =78.8997  cm 2

Long Questions (Question 5)


Question 5:
Diagram below shows a semicircle PTS, centre O and radius 8 cm. PTR is a sector of a circle with centre P and Q is the midpoint of OS.

[Use π = 3.142]
Calculate
(a)TOQ, in radians,
(b) the length , in cm , of the arc TR ,
(c) the area, in cm2 ,of the shaded region.

Solution:
(a)
cosTOQ= 4 8 = 1 2  TOQ= 60 o =60× π 180 =1.047 radians

(b)


TPO= 30 o   =30× π 180   =0.5237 P T 2 = 8 2 + 8 2 2( 8 )( 8 )cos120 P T 2 =192 PT= 192 PT=13.86 cm Length of arc TR=13.86×0.5237   =7.258 cm

(c)
Area of sector PTR = 1 2 × 13.86 2 ×0.5237 =50.30  cm 2 Length TQ = P T 2 P Q 2 = 13.86 2 12 2 =6.935 cm Area of  PTQ = 1 2 ×12×6.935 =41.61  cm 2 Area of shaded region =50.3041.61 =8.69  cm 2


Long Questions (Question 4)


Question 4:
Diagram below shows two circles. The larger circle has centre A and radius 20 cm. The smaller circle has centre B and radius 12 cm. The circles touch at point R. The straight line PQ is a common tangent to the circles at point P and point Q.


[Use π = 3.142]
Given that angle PAR = θ radians,
(a) show that θ = 1.32 ( to two decimal places),
(b) calculate the length, in cm, of the minor arc QR,  
(c) calculate the area, in cm2, of the shaded region.


Solution:
(a)

In BSA cosθ= 8 32 = 1 4   θ=1.32 rad (2 d.p.)

(b)
Angle QBR = 3.142 – 1.32 = 1.822 rad
Length of minor arc QR
= 12 × 1.822
= 21.86 cm

(c)
PQ= 32 2 8 2 =30.98 cm
Area of the shaded region
= Area of trapezium PQBA– Area of sector QBR – Area of sector PAR
½ (12 + 20) (30.98) – ½ (12)2 (1.822) – ½ (20)2(1.32)  
= 495.68 – 131.18 – 264
= 100.5 cm2

Short Questions (Question 5 & 6)


Question 5:
Diagram below shows a sector QOR of a circle with centre O.

It is given that PS = 8 cm and QP = PO= OS = SR = 5 cm.
Find
(a) the length, in cm, of the arc QR,
(b) the area, in cm2, of the shaded region.

Solution:
(a) Length of arc QR = θ = 10 (1.75) = 17.5 cm

(b)
Area of the shaded region
= Area of sector QOR – Area of triangle POS
½ (10)2 (1.75) – ½ (5) (5) sin 1.75 (change calculator to Rad mode)
= 87.5 – 12.30
= 75.2 cm2



Question 6:
Diagram below shows a circle with centre O and radius 12 cm.

Given that A, B and C are points such that OA = AB and  ∠OAC = 90°, find
(a)   ∠BOC, in radians,
(b)  the area, in cm2, of the shaded region.   

Solution:
(a) For triangle OAC,
  cos  ∠AOC = 6/12 
  ÐAOC = 1.047 rad (change calculator to Rad mode)
  ÐBOC = 1.047 rad

(b) 
Area of the shaded region
= Area of BOC – Area of triangle AOC
½ (12)2 (1.047) – ½ (6) (12) sin 1.047 (change calculator to Rad mode)
= 75.38 – 31.17
= 44.21 cm2

Long Questions (Question 7 & 8)


Question 7:
The diagram shows a straight line PQ which meets a straight line RS at the point Q. The point P lies on the y-axis.
(a) Write down the equation of RS in the intercept form.
(b) Given that 2RQ = QS, find the coordinates of Q.
(c) Given that PQ is perpendicular to RS, find the y-intercept of PQ.


Solution:
(a) 
Equation of RS
x 12 + y 6 = 1 x 12 y 6 = 1

(b)
Given  2 R Q = Q S R Q Q S = 1 2 Lets coordinates of  Q = ( x ,   y ) ( ( 0 ) ( 2 ) + ( 12 ) ( 1 ) 1 + 2 , ( 6 ) ( 2 ) + ( 0 ) ( 1 ) 1 + 2 ) = ( x ,   y ) x = 12 3 = 4 y = 12 3 = 4 Q = ( 4 , 4 )

(c) 
Gradient of  R S ,   m R S = ( 6 12 ) = 1 2 m P Q = 1 m R S = 1 1 2 = 2
Point Q = (4, –4), m = –2
Using y = mx+ c
–4 = –2 (4) + c
c = 4
y–intercept of PQ = 4



Question 8:
In the diagram, the equation of FMG is y = – 4. A point P moves such that its distance from E is always half of the distance of E from the straight line FG. Find
(a) The equation of the locus of P,
(b) The x-coordinate of the point of intersection of the locus and the x-axis.


Solution:
(a) 
Gradient of the straight line FMG = 0
EM is perpendicular to FMG, so gradient of EM also = 0, equation of EM is x = 2
Thus, coordinates of point M = (2, 4).

Let coordinates of point P= (x, y).
Given PE = ½ EM
2PE = EM
2 [(x – 2)2+ (y – 4)2]½ = [(2 2)2 + (4 (4))2]½
4 (x2 – 4x + 4 + y2 – 8y +16) = (0 + 64) → (square for both sides)
4x2 – 16x + 16 + 4y2 – 32y + 64 = 64
4x2 + 4y2 – 16x – 32y + 16 = 0
x2 + y2 – 4x – 8y + 4 = 0

(b) 
x2 + y2 – 4x – 8y + 4 = 0
At x axis, y = 0.
x2 + 0 – 4x – 8(0) + 4 = 0
x2  – 4x+ 4 = 0
(x – 2) (x – 2) = 0
x = 2

The x-coordinate of the point of intersection of the locus and the x-axis is 2.

Long Questions (Question 6)


Question 7:
Solutions by scale drawing will not be accepted.
Diagram below shows a triangle OPQ. Point S lies on the line PQ.

(a) A point Y moves such that its distance from point S is always 5 uints.
Find the equation of the locus of Y.  

(b) It is given that point and point Q lie on the locus of Y    .
Calculate
(i) the value of k,
(ii) the coordinates of Q.

(c) Hence, find the area, in uint2, of triangle OPQ.



Solution:
(a)
The equation of the locus  Y   ( x , y )  is given by  Y S = 5  units ( x 5 ) 2 + ( y 3 ) 2 = 5 x 2 10 x + 25 + y 2 6 y + 9 = 25 x 2 + y 2 10 x 6 y + 9 = 0

(b)(i)
Given P (2, k) lies on the locus of Y.
(2)2 + (k)2– 10(2) – 6(k) + 9 = 0  
4 + k2– 20 – 6k + 9 = 0
k2 – 6k – 7 = 0
(k – 7) (k + 1) = 0
k = 7   or   k = – 1
Based on the diagram, k = 7. 
 
(b)(ii) 
As P and Q lie on the locus of Y, is the midpoint of PQ. P = (2, 7), S = (5, 3).
Let the coordinates of Q = (x, y),
( 2+x 2 , 7+y 2 )=( 5,3 ) 2+x 2 =5    and     7+y 2 =3 2+x=10  and    7+y=6 x=8 and    y=1
Coordinates of point Q = (8, –1).

(c)
Area of  OPQ = 1 2 | 0  8  2    0  1  7   0 0 | = 1 2 |0+( 8 )( 7 )+00( 1 )( 2 )0| = 1 2 | 58| =29  units 2

Long Questions (Question 5)


Question 5:
Diagram below shows a quadrilateral ABCD. Point C lies on the y-axis.

The equation of a straight line AD is 2y = 5x – 21
(a) Find
(i) the equation of the straight line AB,
(ii) the coordinates of A,
(b) A point P moves such that its distance from point D is always 5 units.
Find the equation of the locus of P.

Solution:
(a)(i)
2y=5x21 y= 5 2 x 21 2 m AD = 5 2 m AB × m AD =1 m AB × 5 2 =1 m AB = 2 5 Equation of AB y y 1 = m AB ( x x 1 ) y+1= 2 5 ( x+2 ) 5y+5=2x4 5y=2x9

(a)(ii)
2y=5x21 .......... ( 1 ) 5y=2x9 .......... ( 2 ) ( 1 )×5:10y=25x105 .......... ( 3 ) ( 2 )×2:10y=4x18 .......... ( 4 ) ( 2 )( 4 ):0=29x87 x=3 From ( 1 ), 2y=1521 2y=6 y=3 A=( 3 , 3 )

(b)
y=2, 4=5x21 5x=25 x=5 Point D=( 5, 2 ) PD=5 ( x5 ) 2 + ( y2 ) 2 =5 ( x5 ) 2 + ( y2 ) 2 =25 x 2 10x+25+( y 2 4y+4 )=25 x 2 + y 2 10x4y+4=0