Short Question 1 – 3



Question 1
:
A group of 4 men and 3 ladies are to be seated in a row for a photographing session. If the men and ladies want to be seated alternately (man-lady-man-lady...), calculate the number of different arrangements.

Solution:
The arrangements of 4 men and 3 ladies to be seated alternately are as follow:

M    L    M        M    L    M

The number of ways to arrange the seat for 4 men = 4!

The number of ways to arrange the seat for 3 ladies = 3!

Total number of different arrangements for men and ladies = 4! × 3! = 144



Question 2:
Ahmad has 6 durians, 5 watermelons and 2 papayas. If he wants to arrange these fruits in a row and the fruits of the same kind have to be grouped together, calculate the number of different arrangements. The sizes of the fruits are different.

Solution:
The number of ways to arrange 3 groups of fruits that are same kind = 3!

DDDDDD      WWWWW      PP  

The number of ways to arrange 6 durians = 6!
The number of ways to arrange 5 watermelons = 5!
The number of ways to arrange 2 papayas = 2!

Therefore, the number of ways to arrange the fruits with same kind of fruits was grouped together
= 3! × 6! × 5! × 2!
= 1036800



Question 3:
Calculate the number of arrangements, without repetitions, of the letters from the word `SOMETHING' with the condition that they must begin with a vowel.

Solution:
Arrangement of letters begin with vowel  O, M and I =   3 P 1 Arrangement for the rest of the letters 7! Number of arrangements  3 P 1 ×7! =15120

6.3 Combinations


6.3 Combinations
(1) The number of combinations of r objects chosen from n different objects is given by :
n C r = n ! r ! ( n r ) !
(2) A combination of r objects chosen from n different objects is a selection of a set of r objects chosen from n objects. The order of the objects in the chosen set is not taken into consideration.
N o t e : ( i ) n C 0 = 1 ( i i ) n C n = 1 ( i i i ) n C r = n C n r

Example 1:
Calculate the value of  7 C 2 7 C 2 = 7! ( 72 )! ×2! = 7! 5! ×2! = 7 ×6 ×5! 5! ×2! = 7×6 2×1 =21


Calculator Computation: 





Example 2:

There are 6 marbles, each with different colour, which are to be divided equally between 2 children. Find the number of different ways the division of the marbles can be done.
 
Solution:
Number of ways giving 3 marbles to the first child =  6 C 3
 
Number of ways giving the remaining 3 marbles =  3 C 3
 
So, the number of different ways the division of the marbles
  = 6 C 3 × 3 C 3 = 20 × 1 = 20

6.1 Permutations Part 2


(C) Permutation of n Different Objects, Taken r at a Time

1. The number of permutations of n different objects, taken r at a time is given by:

 
2.  A permutation of n different objects, taken r at a time, is an arrangement of a set of r objects chosen from n objects. The order of the objects in the chosen set is taken into consideration.
 
3. The number of permutations of n different objects, taken all at a time, is:




Example 1:
Evaluate each of the following.
(a) 5 P 2 (b) 7 P 3 (c) 9 P 4

Solution:
(a) 5 P 2 = 5 ! ( 5 2 ) ! = 5 ! 3 ! = 5 × 4 × 3 ! 3 ! = 5 × 4 = 20 (b) 7 P 3 = 7 ! ( 7 3 ) ! = 7 ! 4 ! = 7 × 6 × 5 × 4 ! 4 ! = 7 × 6 × 5 = 210 (c) 9 P 4 = 9 ! ( 9 4 ) ! = 9 ! 5 ! = 9 × 8 × 7 × 6 × 5 ! 5 ! = 9 × 8 × 7 × 6 = 3024

Calculator Computation: 




Short Question 5 – 8


Question 4:
A committee that consists of 6 members is to be selected from 5 teachers and 4 students. Find the number of different committees that can be formed if
(a) there is no restriction,
(b) the number of teachers must exceed the number of students.

Solution:

(a)
Total number of committees = 5 + 4 = 9
6 members to be selected from 9 committees with no restriction
= 9 C 6 = 84

(b)
If the number of teachers must exceed the number of students, the combination = 4 teachers 2 students + 5 teachers 1 student = 5 C 4 × 4 C 2 + 5 C 5 × 4 C 1 = 30 + 4 = 34


Question 5:
A school prefect committee that consists of 6 persons is to be chosen from 6 Malays, 5 Chinese and 4 Indians. Calculate the number of different committees that can be formed if the number of Malays, Chinese and Indians must be equal.

Solution:
Number of different committees that can be formed for 2 Malays, 2 Chinese and 2 Indians
= 6 C 2 × 5 C 2 × 4 C 2 = 900


Question 6:
There are 10 different flavour candies in a plastic bag.
Find
(a) the number of ways 3 candies can be chosen from the plastic bag.
(b) the number of ways at least 8 candies can be chosen from the plastic bag.

Solution:

(a)
Number of ways choosing 3 candies out of 10 candies
= 10 C 3 = 120

(b)
Number of ways choosing 8 candies =   = 10 C 8
Number of ways choosing 9 candies = 10 C 9
Number of ways choosing 10 candies = 10 C 10

Hence, number of ways of choosing at least 8 candies
= 10 C 8 + 10 C 9 + 10 C 10 = 56


5.6d Solving Trigonometric Equations (Involving Addition Formulae And Double Angle Formulae)

(D) Solving Trigonometric Equations (Involving Addition Formulae and Double Angle Formulae)

Example 1 (Addition Formulae):
Solve the following equation for 0o≤ 360o:
(a) sin ( x – 25o) = 3 sin ( x + 25o)
(b) 3 cos ( 2x + 10o) = 2   

Solution:  
(a)
sin ( x – 25o) = 3 sin ( x + 25o)   
sin x cos 25o – cos x sin 25o = 3 (sin x cos 25o + cos x sin 25o)
sin x cos 25o – cos x sin 25o = 3 sin x cos 25o + 3 cos x sin 25o
– sin x cos 25o = 4 cos x sin 25o
sin x cos x = 4 sin 25 2 cos 25
tan x = – 2 tan 25o
tan x = – 2 (0.4663)
tan x = – 0.9326
basic angle x = 43o
The reference angles of  x = 43o are in the second and fourth quadrants.
Hence, x = 180o – 43o, 360o – 43o
x = 137o , 317o

(b)
3 cos ( 2x + 10o) = 2   ← (Take the angles in the range of  0ox ≤ 720owhich in 2 complete revolutions)
cos ( 2x + 10o) = 
basic angle ( 2x + 10o) = 48.19o
2x + 10o = 48.19o, 360o – 48.19o , 360o + 48.19o, 720o – 48.19o  
2x + 10o = 48.19o, 311.81o , 408.19o, 671.81o
2x = 38.19o, 301.81o , 398.19o, 661.81o
x = 19.10o, 150.91o , 199.10o, 330.91o


Example 2 (Double Angle):
Find all the angles that satisfy the equation 5 cos 2+ 9 sin A = 7, 
0° < A < 360°.
 
Solution:  
5 cos 2A + 9 sin A = 7
5 (1 – 2 sin2A) + 9 sin A = 7   ← (substitution of cos 2A = 1 – 2 sin²A is used. Then the whole equation will be in terms of sin A)
5 – 10 sin2A + 9 sin A – 7 = 0
– 10 sin2A + 9 sin A – 2 = 0
10 sin2A – 9 sin A + 2 = 0
(2 sin A – 1)(5 sin A – 2) = 0 ← (Factorise)
sin A = ½ = 0.5    or   sin A= 2 5 = 0.4
When sin A = 0.5,   
Basic angle = 30º
A = 30º, 180º – 30º
A = 30º, 150º
When sin A = 0.4,   
Basic angle = 23.58º
A = 23.58º, 180º – 23.58º
A = 23.58º, 156.42º
Hence A = 23.58º, 30º, 150º, 156.42º.


Example 3 (Double Angle):
Find all the possible values of θ between 0 and 2π rad for the equation sin 2θ = sin θ
 
Solution:  
sin 2θ = sin θ
2 sin θ cos θ = sin θ   ←  (sin 2θ = 2 sin θ cos θ)
2 sin θ cos θ – sin θ = 0
sin θ (2 cos θ – 1) = 0   ← (Factorise)
sin θ = 0    or   2 cos θ – 1 = 0
When sin θ = 0
θ = 0, π, 2π
When 2 cos θ – 1= 0
cos θ = ½
θ = 1 3 π , 5 3 π Hence, θ = 0 , 1 3 π , π , 5 3 π , 2 π .


Short Question 1 – 3


Question 1:
Solve the equation 3 cos 2A = 8 sin A – 5 for 0°  A ≤ 360°.

Solution:

3 cos 2A = 8 sin A – 5
3(1–2 sin2 A) = 8 sin A – 5
3 – 6 sin2 A = 8 sin A – 5
6 sin2 A + 8 sin A – 8 = 0
3 sin2 A + 4 sin A – 4 = 0
(3 sin A – 2)(sin A + 2) = 0  ←( Factorise the equation )
3 sin A – 2 = 0
sinA= 2 3 ( sin A is positive in the 1st and 2nd quadrants. )
A = 41°49’, 138°11’
Or
sin A + 2 = 0
sin A = –2 (no solution)

Hence A = 41°49’, 138°11’.



Question 2:
Solve the equation 2 cos 2x – cos x – 1 = 0 for 0°  x ≤ 360°.

Solution:

2 cos 2x – cos x – 1 = 0
2 (2 cos2 x – 1) – cos x – 1 = 0
4 cos2 x– 2 – cos x – 1 = 0
4 cos2 x– cos x – 3 = 0
(4 cos x + 3)(cos x – 1) = 0
cos x =  3 4
basic angle = 41°24’
x = 138°36’, 221°24’
or
cos x = 1,
x = 0°, 360°

Hence x = 0°, 138°36’, 221°24’, 360°



Question 3:
Solve the equation 6 sec² x – 13 tan x = 0, 0°   x  360°.

Solution:
6 sec² x – 13 tan = 0
6 (1 + tan²x) – 13 tan x = 0
6 tan²x – 13 tan x + 6 = 0
(3 tan x – 2)(2 tan x – 3) = 0
tan x = 2/3   or   tan x = 3/2

tan x = 2/3
Basic angle = 33.69°
x = 33.69°, 180° + 33.69°
x = 33.69°, 213.69° 
Or
tan x = 3/2
Basic angle = 56.31°
x = 56.31°, 180° + 56.31°
x = 56.31°, 236.31°

Hence x = 33.69°, 56.31°, 213.69°, 236.31°. 


Short Question 7 & 8


Question 7:
It is given that   sin A = 5 13 and cos B = 4 5 , where A is an obtuse angle and B is an acute angle.
Find
(a) tan A
(b) sin (A + B)
(c) cos (A B
 
Solution:
(a)
tan A = 5 12


(b)
sin ( A + B ) = sin A cos B + cos A sin B sin ( A + B ) = ( 5 13 ) ( 4 5 ) + ( 12 13 ) ( 3 5 ) cos A = 12 13 sin B = 3 5 sin ( A + B ) = 4 13 36 65 sin ( A + B ) = 16 65


(c)
cos ( A B ) = cos A cos B + sin A sin B cos ( A B ) = ( 12 13 ) ( 4 5 ) + ( 5 13 ) ( 3 5 ) cos ( A B ) = 33 65



Question 8:
If sin A = p, and 90° < A < 180°, express in terms of p
(a) tan A
(b) cos A
(c) sin 2A

Solution:
Using Pythagoras Theorem, Adjacent side = 1 2 p 2 = 1 p 2


(a)

tan A = p 1 p 2 tan is negative at second quadrant


(b)
cos A = 1 p 2 cos is negative at second quadrant


(c)
sin A = 2 sin A cos A sin A = 2 ( p ) ( 1 p 2 ) sin A = 2 p 1 p 2

Short Question 11 – 14


Question 11:
Prove the identity cos 2 x 1sinx =1+sinx

Solution:

LHS = cos 2 x 1sinx = 1 sin 2 x 1sinx sin 2 x+ cos 2 x=1 = ( 1+sinx )( 1sinx ) 1sinx =1+sinx =RHS Proven



Question 12:
Prove the identity sin 2 x cos 2 x= tan 2 x1 tan 2 x+1

Solution:

RHS = tan 2 x1 tan 2 x+1 = sin 2 x cos 2 x 1 sin 2 x cos 2 x +1 tanx= sinx cosx = sin 2 x cos 2 x cos 2 x sin 2 x+ cos 2 x cos 2 x = sin 2 x cos 2 x sin 2 x+ cos 2 x = sin 2 x cos 2 x sin 2 x+ cos 2 x=1 =LHS Proven


Question 13:
Prove the identity tan 2 θ sin 2 θ= tan 2 θ sin 2 θ

Solution:

LHS = tan 2 θ sin 2 θ = sin 2 θ cos 2 θ sin 2 θ = sin 2 θ sin 2 θ cos 2 θ cos 2 θ = sin 2 θ( 1 cos 2 θ ) cos 2 θ = sin 2 θ sin 2 θ cos 2 θ =( sin 2 θ cos 2 θ )( sin 2 θ ) = tan 2 θ sin 2 θ =RHS Proven



Question 14:
Prove the identity cosec 2 θ ( sec 2 θ tan 2 θ )1= cot 2 θ

Solution:

LHS = cosec 2 θ ( sec 2 θ tan 2 θ )1 = cosec 2 θ ( 1 )1 tan 2 θ+1= sec 2 θ sec 2 θ tan 2 θ=1 = cosec 2 θ1 = cot 2 θ 1+ cot 2 θ=cose c 2 θ cose c 2 θ1= cot 2 θ =RHS Proven


5.6b Solving Trigonometric Equation (Factorization)

5.6b Solving Trigonometric Equation (Factorization)
 
Example:
Find all the angles that satisfy each of the following equations for £ £ 360°.
(a)  cot x = 2 cos x
(b)  3 sec x = 4 cos x  
(c)  16 tan x = cot x

Solution:
(a)
cot x = 2 cos x cos x sin x = 2 cos x cos x = 2 cos x sin x cos x + 2 sin x cos x = 0 cos x ( 1 + 2 sin x ) = 0 cos x = 0 x = 90 , 270 1 + 2 sin x = 0 sin x = 1 2 Basic = 3 0 x = ( 180 + 30 ) , ( 360 30 ) x = 210 , 330 x = 90 , 210 , 270 , 330

(b)
3 sec x = 4 cos x 3 cos x = 4 cos x 3 = 4 cos 2 x cos 2 x = 3 4 cos x = ± 3 2 Basic = 30 x = 30 , ( 180 30 ) , ( 180 + 30 ) , ( 360 30 ) x = 30 , 150 , 210 , 330

(c)
16 tan x = cot x 16 tan x = 1 tan x tan 2 x = 1 16 tan x = ± 1 4 Basic = 14.04 x = 14.04 , ( 180 14.04 ) , ( 180 + 14.04 ) , ( 360 14.04 ) x = 14.04 , 165.96 , 194.04 , 345.96


5.6c Solving Trigonometric Equation (Form Quadratic Equation In Sinx/ Cosx/ Tanx/ Cosecx/ Secx/ Cotx)

(C) Solving Trigonometric Equation (Form Quadratic Equation in sinx/ cosx/ tanx/ cosecx/ secx/ cotx)

Example:
Find all the angles between 0° and 360° that satisfy each of the following equations.
(a) 3 sin² x – 2 sin x – 1 = 0
(b)  2 sin x = cosec x + 1
(c) 5 sin² x = 2 (1 + cos x)
(d) 2 sec x = 1 + cos x
(e)  2 cot² x + 8 = 7 cosec x

Solution:
(a) 
3 sin² x – 2 sin x – 1 = 0
(3 sin x + 1)(sin x – 1) = 0
sin x = –, sin x = 1
sin x = –
basic angle = 19.47°
x = 180° + 19.47°, 360° – 19.47°
x = 199.47°, 340.53
sin x = 1, x = 90°
Hence x = 90°, 199.47°, 340.53°

(b)
 
2 sin x = cosec x + 1
2 sin x = 1 sin x + 1
2 sin ² x = 1 + sin x
2 sin ² x – sin x – 1 =0
(2 sin x + 1)(sin x – 1) = 0
sin x = –½, sin x = 1
sin x = –½
basic angle = 30°
x = 180° + 30°, 360° – 30°
x = 210°, 330°
sin x = 1, x = 90°
Hence x = 90°, 210°, 330°

(c)

5 sin² x = 2 (1 + cos x)
5 (1 – cos² x) = 2 + 2 cos x
5 – 5 cos² x – 2 – 2 cos x = 0
– 5 cos² x – 2 cos x + 3 = 0
5 cos² x + 2 cos x – 3 = 0
(5 cos x – 3)(cos x + 1) = 0
cos x = 3 5 , cos x = 1 cos x = 3 5
basic angle = 53.13°
x = 53.13°, 360° – 53.13°
x = 53.13°, 306.87°
cos x = – 1
x = 180°
Hence x = 53.13°, 180°, 306.87°

(d)
 
2 sec x = 1 + cos x
2 cos x = 1 + cos x
2 = cos x + cos² x
cos² x + cos x – 2 = 0
(cos x – 1)(cos x + 2) = 0
cos x = 1
x = 0°, 360°
cos x = –2 (not accepted)
Hence x = 0°, 360°

(e)
2 cot² x + 8 = 7 cosec x
2 (cosec² x – 1) + 8 = 7 cosec x
2 cosec² x – 2 – 7 cosec x + 8 = 0
2 cosec2x – 7 cosec x + 6 = 0
(2 cosec x – 3)(cosec x – 2) = 0
cos e c x = 3 2 , cos e c x = 2 sin x = 2 3 , sin x = 1 2 sin x = 2 3 basic angle = 41.81 x = 41.81 , 180 41.81 sin x = 1 2 basic angle = 30 x = 30 , 180 30 Hence x = 30 , 41.81 , 138.19 , 150