Long Question 1


Question 1:


The above diagram shows triangle OAB. The straight line AP intersects the straight line OQ at R. It is given that OP=14OB, AQ=14AB, OP=4b˜ and OA=8a˜.  

(a) Express in terms of   a˜ and/ or b˜:
(i)AP(ii)OQ

(b)(i) Given that AR=hAP , state   AR  in terms of h   a˜ and b˜.
 (ii) Given that   RQ=kOQ, state  in terms of k,   a˜ and b˜.

(c) Using   AQ=AR+RQ, find the value of h and of k.

Solution
:

(a)(i)
AP=AO+OPAP=OA+OPAP=8a˜+4b˜


(a)(ii)
OQ=OA+AQOQ=8a˜+14ABOQ=8a˜+14(AO+OB)OQ=8a˜+14(8a˜+4OP)OQ=8a˜+14(8a˜+4(4b˜))OQ=8a˜2a˜+4b˜OQ=6a˜+4b˜


(b)(i)
AR=hAPAR=h(8a˜+4b˜)AR=8ha˜+4hb˜


(b)(ii)
RQ=kOQRQ=k(6a˜+4b˜)RQ=6ka˜+4kb˜


(c)
AQ=AR+RQAQ=8ha˜+4hb˜+(6ka˜+4kb˜)AO+OQ=8ha˜+4hb˜+6ka˜+4kb˜8a˜+6a˜+4b˜=8ha˜+6ka˜+4hb˜+4kb˜2a˜+4b˜=8ha˜+6ka˜+4hb˜+4kb˜2=8h+6k1=4h+3k(1)4=4h+4k1=h+kk=1h(2)Substitute (2) into (1),1=4h+3(1h)1=4h+33h4=7hh=47From (2),k=147=37

Long Question 3


Question 3:
In diagram below, PQRS is a quadrilateral. PTS and TUR are straight lines.
 
 
It is given that PQ=20x˜,  PT=8y˜,  SR=25x˜24y˜,  PT=14PS  and  TU=35TR
(a) Express in terms of x˜ and/or   y˜ :
 (i)   QS
 (ii) TR
(b) Show that  the points  Q, U and S  are collinear.
(c) If   |x˜| = 2  and |y˜| = 3, find   |QS|


Solution:

(a)(i)
QS=QP+PSQS=20x˜+32y˜Given PT=14PSPS=4PT=4(8y˜)=32y˜


(a)(ii)
TR=TS+SRTR=34PS+25x˜24y˜TR=34(32y˜)+25x˜24y˜TR=24y˜+25x˜24y˜TR=25x˜


(b)
QU=QP+PT+TUQU=20x˜+8y˜+35(25x˜)GivenTU=35TRQU=20x˜+8y˜+15x˜QU=5x˜+8y˜From (a)(i) QS=20x˜+32y˜QSQU=20x˜+32y˜5x˜+8y˜QSQU=4(5x˜+8y˜)(5x˜+8y˜)QSQU=4QS=4QU


(c)









P S = 32 y ˜ | P S | = 32 | y ˜ | | P S | = 32 × 3 = 96 P Q = 20 x ˜ | P Q | = 20 | x ˜ | | P Q | = 20 × 2 = 40 | Q S | = 96 2 + 40 2 | Q S | = 104