SPM Practice Question 3


Question 3:
An arithmetic progression has 16 terms. The sum of the 16 terms is 188, and the sum of the even terms is 96. Find
(a) the first term and the common difference,
(b) the last term.

Solution:
(a) Let the first term = a
Common difference = d

Given    S 16 =188 Thus,   16 2 [ 2a+15d ]=188   8[ 2a+15d ]=188    2a+15d= 188 8    2a+15d=23.5( 1 )

Given the sum of the even terms = 96
T 2 + T 4 + T 6 +.....+ T 16 =96 ( a+d )+( a+3d )+( a+5d )+.....+( a+15d )=96 8 2 [ ( a+d )+( a+15d ) ]=96 4[ 2a+16d ]=96 2a+16d=24( 2 )

(2) – (1):
16d – 15d = 24 – 23.5
d = 0.5
Substitute d = 0.5 into (2):
2a + 16 (0.5) = 24
2a + 8 = 24
2a = 16
a = 8
Therefore, first term = 8 and common difference = 0.5.


(b) Last term
= T2
= 8 + 15 (0.5)
= 8 +7.5
= 15.5

(Long Questions) – Question 8


Question 8:
Diagram below shows a cyclic quadrilateral PQRS.


(a) Calculate
(i) the length, in cm, of PR,
(ii) ∠PRQ.
(b) Find
(i) the area, in cm2, of ∆ PRS,
(ii) the short distance, in cm, from point S to PR.

Solution:
(a)(i)
P R 2 = 7 2 + 8 2 2( 7 )( 8 )cos 80 o P R 2 =11319.4486 PR= 93.5514 PR=9.6722 cm


(a)(ii)
In cyclic quadrilateral PQR+PSR=180 PQR+80=180 PQR= 100 o sinQPR 3 = sin100 9.6722 sinQPR=0.3055 QPR= 17 o 47' PRQ= 180 o 100 o 17 o 47'   = 62 o 13'


(b)(i)
Area of PRS = 1 2 ×7×8sin 80 o =27.5746  cm 2


(b)(ii)


Area of PRS=27.5746 1 2 ×9.6722×h=27.5746    h= 27.5746×2 9.6722  =5.7018 cm Shortest distance=5.7018 cm

(Long Questions) – Question 7


Question 7:
Diagram below shows a quadrilateral ABCD where the sides AB and CD are parallel. ∠BAC is an obtuse angle.

Given that AB = 14 cm, BC = 27 cm, ∠ACB = 30o and AB : DC = 7 : 3.
Calculate
(a) ∠BAC.
(b) the length, in cm, of diagonal BD.
(c) the area, in cm2, of quadrilateral ABCD.

Solution:
(a)
sinBAC 27 = sin 30 o 14 sinBAC= sin 30 o 14 ×27 sinBAC=0.9643  BAC= 74.64 o BAC ( obtuse )= 180 o 74.64 o  = 105.36 o


(b)
AB parallel with DC BAC=ACD BCD= 105.36 o + 30 o    = 135.36 o DC AB = 3 7 DC= 3 7 ×14 cm   =6 cm B D 2 = 27 2 + 6 2 2( 27 )( 6 )cosBCD B D 2 =765324cos 135.36 o B D 2 =995.54 BD=31.55 cm


(c)
ABC= 180 o 30 o 105.36 o    = 44.64 o A C 2 = 27 2 + 14 2 2( 27 )( 14 )cosABC A C 2 =925756cos 44.64 o A C 2 =387.08 AC=19.67 cm Area ABC = 1 2 ( 14 )( 27 )sin 44.64 o =132.80  cm 2 Area ACD = 1 2 ( 19.67 )( 6 )sin 105.36 o =56.90  cm 2 Area of quadrilateral ABCD =132.80+56.90 =189.7  cm 2

Short Questions (Question 17 – 19)


Question 17:

In the diagram above, the straight line PR is normal to the curve   y = x 2 2 + 1 at Q. Find the value of k.

Solution:
y = x 2 2 + 1 d y d x = x At point  Q ,   x -coordinate = 2 , Gradient of the curve,  d y d x = 2 Hence, gradient of normal to the curve,  P R = 1 2 3 0 2 k = 1 2 6 = 2 + k k = 8



Question 18:
The normal to the curve y = x2 + 3x at the point P is parallel to the straight line 
y = x + 12. Find the equation of the normal to the curve at the point P.

Solution:
Given normal to the curve at point P is parallel to the straight line y = –x + 12.
Hence, gradient of normal to the curve = –1.
As a result, gradient of tangent to the curve = 1

y = x2 + 3x
d y d x = 2x + 3
2x + 3 = 1
2x = –2
x = –1
y = (–1)2+ 3(–1)
y = –2
Point P = (–1, –2).

Equation of the normal to the curve at point P is,
y – (–2) = –1 (x – (–1))
y + 2 = – x – 1
y = – x– 3




Question 19:
Given that   y = 3 4 x 2 , find the approximate change in x which will cause y to decrease from 48 to 47.7.

Solution:
y = 3 4 x 2 d y d x = ( 2 ) 3 4 x = 3 2 x δ y = 47.7 48 = 0.3 Approximate change in  x  to  y δ x δ y d x d y δ x = d x d y × δ y δ x = 2 3 x × ( 0.3 ) δ x = 2 3 ( 8 ) × ( 0.3 ) y = 48 3 4 x 2 = 48 x 2 = 64 x = 8 δ x = 0.025

Short Questions (Question 8 – 10)


Question 8:
Find d s d t for each of the following functions.
( a )   s = ( t 3 t ) 2 ( b )   s = ( t + 1 ) ( 3 5 t ) t 2

Solution:
(a)
s = ( t 3 t ) 2 s = ( t 3 t ) ( t 3 t ) s = t 2 6 + 9 t 2 s = t 2 6 + 9 t 2 d s d t = 2 t 18 t 3 = 2 t 18 t 3

(b)
s = ( t + 1 ) ( 3 5 t ) t 2 s = 3 t 5 t 2 + 3 5 t t 2 = 5 t 2 2 t + 3 t 2 s = 5 2 t + 3 t 2 = 5 2 t 1 + 3 t 2 d s d t = 2 t 2 6 t 3 = 2 t 2 6 t 3



Question 9:
Given that  y = 1 5 x 4 x 3 , find  d y d x .

Solution:
d y d x = v d u d x u d v d x v 2 = ( x 3 ) . 20 x 3 ( 1 5 x 4 ) .1 ( x 3 ) 2 d y d x = 20 x 4 + 60 x 3 1 + 5 x 4 ( x 3 ) 2 d y d x = 15 x 4 + 60 x 3 1 ( x 3 ) 2



Question 10:
Given that  f ( x ) = ( x 2 3 ) 5 1 3 x , find  f ' ( 0 ) .

Solution:
f ( x ) = ( x 2 3 ) 5 1 3 x f ' ( x ) = v d u d x u d v d x v 2 = ( 1 3 x ) .5 ( x 2 3 ) 4 .2 x ( x 2 3 ) 5 . 3 ( 1 3 x ) 2 f ' ( x ) = 10 x ( 1 3 x ) ( x 2 3 ) 4 + 3 ( x 2 3 ) 5 ( 1 3 x ) 2 f ' ( x ) = ( x 2 3 ) 4 [ 10 x 30 x 2 + 3 ( x 2 3 ) ] ( 1 3 x ) 2 f ' ( x ) = ( x 2 3 ) 4 [ 27 x 2 + 10 x 9 ] ( 1 3 x ) 2 f ' ( 0 ) = ( 0 2 3 ) 4 [ 27 ( 0 ) 2 + 10 ( 0 ) 9 ] ( 1 3 ( 0 ) ) 2 f ' ( 0 ) = 81 × ( 9 ) 1 = 729

Long Questions (Question 8)

Question 8:

In the diagram above, AXB is an arc of a circle centre O and radius 10 cm with  ∠AOB = 0.82 radian. AYB is an arc of a circle centre P and radius 5 cm with  ∠APB = θ.
Calculate:
(a) the length of the chord AB,
(b) the value of θ in radians,
(c) the difference in length between the arcs AYB and AXB.



Solution:
(a)
1 2 AB=sin0.41×10( Change the calculator to Rad mode ) 1 2 AB=3.99 The length of chord AB=3.99×2=7.98 cm.

(b)
Let  1 2 θ=α, θ=2α sinα= 3.99 5 α=0.924 rad θ=0.924×2=1.848 radian.

(c)
Using s =
Arcs AXB = 10 × 0.82 = 8.2 cm
Arcs AYB = 5 × 1.848 = 9.24 cm

Difference in length between the arcs AYB and AXB
= 9.24 – 8.2
= 1.04 cm

Long Questions (Question 7)


Question 7:
Diagram below shows a circle PQRT, centre and radius 5 cm. AQB is a tangent to the circle at Q. The straight lines, AO and BO, intersect the circle at P and R respectively. 
OPQR is a rhombus. ACB is an arc of a circle at centre O.
Calculate
(a) the angle x , in terms of π ,
(b) the length , in cm , of the arc ACB ,   
(c) the area, in cm2,of the shaded region.



Solution:
(a)
Rhombus has 4 equal sides, therefore OP = PQ = QR = OR = 5 cm
OR is radius to the circle, therefore OR = OQ = 5 cm

Triangles OQR and OQP are equilateral triangle,
Therefore,  ∠ QOR=  ∠QOP = 60o
 ∠ POR = 120o
x = 120o × π/180o
x = 2π/ 3 rad

(b) 
cos  ∠ AOQ= OQ / OA
cos 60o = 5 / OA
OA = 10 cm

Length of arc, ACB,
s = r θ
Arc ACB = (10) (2π / 3)
Arc ACB = 20.94 cm

(c)
Area of shaded region = 1 2 r 2 ( θsinθ ) ( change calculator to Rad mode ) = 1 2 ( 10 ) 2 ( 2π 3 sin 2π 3 ) =50( 2.0940.866 ) =61.40  cm 2

Long Questions (Question 6)


Question 6:
Diagram below shows a circle PQT with centre O and radius 7 cm.

QS
is a tangent to the circle at point Q and QSR is a quadrant of a circle with centre Q. Q is the midpoint of OR and QP is a chord. OQR and SOP are straight lines.
[Use π = 3.142]
Calculate
(a) angle θ, in radians,
(b) the perimeter, in cm ,of the shaded region,
(c) the area, in cm2 ,of the shaded region.


Solution:
(a)
OQ=QR=QS=7 cm tanθ=1  θ= 45 o    = 45 o × π 180 o    =0.7855 rad

(b)
Length of arc RS =7×( 0.7855×2 ) π rad= 180 o 45 o =0.7855 rad 90 o =0.7855 ×2 rad =7×1.571 =10.997 cm Length of arc QP =7×( 0.7855×3 ) =7×2.3565 =16.496 cm Length of chord QP = 7 2 + 7 2 2( 7 )( 7 )cos 135 o refer form 4 chapter 10 ( solution of triangle )for cosine rule = 167.30 =12.934 cm Perimeter of the shaded region =7+7+10.997+16.496+12.934 =54.427 cm

(c)
Area of shaded region =( 1 2 × 7 2 ×1.571 )+( 1 2 × 7 2 ×2.3565 ) ( 1 2 ×7×7×sin 135 o ) refer form 4 chapter 10 ( solution of triangle )for area rule =38.4895+57.734317.3241 =78.8997  cm 2

Long Questions (Question 5)


Question 5:
Diagram below shows a semicircle PTS, centre O and radius 8 cm. PTR is a sector of a circle with centre P and Q is the midpoint of OS.

[Use π = 3.142]
Calculate
(a)TOQ, in radians,
(b) the length , in cm , of the arc TR ,
(c) the area, in cm2 ,of the shaded region.

Solution:
(a)
cosTOQ= 4 8 = 1 2  TOQ= 60 o =60× π 180 =1.047 radians

(b)


TPO= 30 o   =30× π 180   =0.5237 P T 2 = 8 2 + 8 2 2( 8 )( 8 )cos120 P T 2 =192 PT= 192 PT=13.86 cm Length of arc TR=13.86×0.5237   =7.258 cm

(c)
Area of sector PTR = 1 2 × 13.86 2 ×0.5237 =50.30  cm 2 Length TQ = P T 2 P Q 2 = 13.86 2 12 2 =6.935 cm Area of  PTQ = 1 2 ×12×6.935 =41.61  cm 2 Area of shaded region =50.3041.61 =8.69  cm 2


Long Questions (Question 4)


Question 4:
Diagram below shows two circles. The larger circle has centre A and radius 20 cm. The smaller circle has centre B and radius 12 cm. The circles touch at point R. The straight line PQ is a common tangent to the circles at point P and point Q.


[Use π = 3.142]
Given that angle PAR = θ radians,
(a) show that θ = 1.32 ( to two decimal places),
(b) calculate the length, in cm, of the minor arc QR,  
(c) calculate the area, in cm2, of the shaded region.


Solution:
(a)

In BSA cosθ= 8 32 = 1 4   θ=1.32 rad (2 d.p.)

(b)
Angle QBR = 3.142 – 1.32 = 1.822 rad
Length of minor arc QR
= 12 × 1.822
= 21.86 cm

(c)
PQ= 32 2 8 2 =30.98 cm
Area of the shaded region
= Area of trapezium PQBA– Area of sector QBR – Area of sector PAR
½ (12 + 20) (30.98) – ½ (12)2 (1.822) – ½ (20)2(1.32)  
= 495.68 – 131.18 – 264
= 100.5 cm2