5.5 Formulae of sin (A ± B), cos (A ± B), tan (A ± B), sin 2A, cos 2A, tan 2A


5.5 Formulae of sin (A ± B), cos (A ± B), tan (A ± B), sin 2A, cos 2A, tan 2A

(A) Compound Angles Formulae:
sin ( A ± B ) = sin A cos B ± cos A sin B cos ( A ± B ) = cos A cos B sin A sin B tan ( A ± B ) = tan A ± tan B 1 tan A tan B


(B) Double Angle Formulae:

  • sin 2A = 2 sin A cos A
  • cos 2A = cos2 A – sin2 A
  • cos 2A = 2 cos2 A – 1
  • cos 2A = 1 – 2 sin2 A
  • tan 2 A = 2 tan A 1 tan 2 A   

(C) Half Angle Formulae:
   sinA=2sin A 2 cos A 2    cosA= sin 2 A 2 cos 2 A 2      cosA=2 cos 2 A 2 1   cosA=12 cos 2 A 2    tanA= 2tan A 2 1 tan 2 A 2


5.5.1 Proving Trigonometric Identities using Addition Formula and Double Angle Formulae

Example 1:
Prove each of the following trigonometric identities.
(a)  sin( A+B )sin( AB ) cosAcosB =2tanB (b)  cos( A+B ) sinAcosB =cotAtanB (c) tan( A+ 45 o )= sinA+cosA cosAsinA

Solution:
(a)
LHS = sin( A+B )sin( AB ) cosAcosB = ( sinAcosB+cosAsinB )( sinAcosBcosAsinB ) cosAcosB = 2 cosA sinB cosA cosB = 2sinB cosB =2tanB=RHS (proven)


(b)
L H S = cos ( A + B ) sin A cos B = cos A cos B sin A sin B sin A cos B = cos A cos B sin A cos B sin A sin B sin A cos B = cos A sin A sin B cos B = cot A tan B = R H S (proven)  


(c)
L H S = tan ( A + 45 o ) = t a n A + tan 45 o 1 t a n A tan 45 o = t a n A + 1 1 t a n A tan 45 o = 1 = sin A cos A + 1 1 sin A cos A = sin A + cos A cos A × cos A cos A sin A = sin A + cos A cos A sin A = R H S (proven)

Short Question 15 – 18


Question 15:
Prove the identity 2 cos 2 A + 1 = s e c 2 A

Solution:
LHS = 2 cos 2 A + 1 = 2 ( 2 cos 2 A 1 ) + 1 cos 2 A = 2 cos 2 A 1 = 2 2 cos 2 A = 1 cos 2 A = s e c 2 A = RHS Proven
 


Question 16:
Prove the identity 2 tan A 2 s e c 2 A = tan 2 A

Solution:
LHS = 2 tan A 2 s e c 2 A = 2 tan A 2 ( tan 2 A + 1 ) tan 2 A + 1 = s e c 2 A = 2 tan A 1 tan 2 A = tan 2 A = RHS Proven



Question 17:
Prove the identity tan x + cot x = 2 cos e c 2 x

Solution:
LHS = tan x + cot x = sin x cos x + cos x sin x = sin 2 x + cos 2 x cos x sin x = 1 cos x sin x sin 2 x + cos 2 x = 1 = 1 1 2 sin 2 x sin 2 x = 2 sin x cos x 1 2 sin 2 x = sin x cos x = 2 sin 2 x = 2 ( 1 sin 2 x ) = 2 cos e c 2 x = RHS Proven
 


Question 18:
Prove the identity cos x sin 2 x cos 2 x + sin x 1 = 1 tan x

Solution:
LHS = cos x sin 2 x cos 2 x + sin x 1 = cos x 2 sin x cos x ( 1 2 sin 2 x ) + sin x 1 cos 2 x = 1 2 sin 2 x = cos x ( 1 2 sin x ) sin x 2 sin 2 x = cos x ( 1 2 sin x ) sin x ( 1 2 sin x ) = cos x sin x = cot x = 1 tan x = RHS Proven

5.2.1 Six Trigonometric Functions of Any Angle


5.2a Six Trigonometric Functions of Any Angle 

(A) The definition of sin, cos, tan, cosec, sec and cot


1. Let P (x, y) be any point on the circumference of the circle with centre O and of radius r. Based on ∆ OPQ in the above diagram,



2. The definitions of tangent, cotangent, secant and cosecant of any angle are:





3. The relations of the trigonometric ratio of an angle θ with its complementary angle (90oθ) are:


For examples:
(a) sin 75= cos (90o – 75o) = cos 15o
(b) tan 50= cot (90o – 50o) = cot 40o
(c) sec 25o= cosec (90o – 25o) = cosec 65o



4. The trigonometric ratios of any negative angle (–θ) are:



  • A negative angle is an angle measured in a clockwise direction from the positive x-axis.
  • For example, – 60ois equivalent to 300o (360o – 60o).

Example:
Express each of the following trigonometric functions in terms of the trigonometric ratios of acute angles. Hence, find each value using a calculator.
(a) cos (– 325o)
(b) tan (– 124o)
(c) sin (– 115o)

Solution:
(a)
cos (– 325o)
= cos 325o  ← {The formula cos (–θ) = cos θ is used}
= cos (360o– 325o)  ← {At fourth quadrant, cos is positive}
= cos 35o
= 0.8192

(b) 
tan (– 124o)
= – tan 124o   ← {The formula tan (–θ) = – tan θ is used}
= – [– tan (180o– 124o)]  ← {At second quadrant, tan is negative}
= tan 56o
= 1.483

(c)
sin (– 115o)
= – sin 115o   ← {The formula sin (–θ) = – sin θ is used}
= – sin (180o– 115o)  ← {At second quadrant, sin is positive}
= – sin 65o
= – 0.9063

5.6a Solving Trigonometric Equation (Basic Equation In Sinx/ Cosx/ Tanx/ Cosecx/ Secx/ Cotx)


5.6 Simple Trigonometric Equations

Steps to solve simple trigonometric equation:
(1) Determine the range of values of the required angles.
(2) Find a basic angle by using calculator.
(3) Determine the quadrants the angle should be.
(4) Determine the values of angles in those quadrants.



(A) Solving Trigonometric Equation (Basic Equation in sinx/ cosx/ tanx/ cosecx/ secx/ cotx)

Example:
Find all the values of θ  for 0° < θ  < 360° that satisfy each of the following trigonometric equations.
(a) sin θ = 0.6137
(b) cos θ = 0.2377
(c) tan θ = 2.7825
(d) sin θ = -0.8537
(e) sin 2θ = 0.5293

Solution:
(a)
sin 
θ = 0.6137
basic angle = sinˉ¹ 0.6137 = 37.86°
θ = 37.86°, 180°-37.86°
θ = 37.86°, 142.14°

(b)
cos θ  = 0.2377
basic angle = cosˉ¹ 0.2377 = 76.25°
θ = 76.25°, 360° – 76.25°
θ = 76.25°, 283.75°

(c)
tan θ  = 2.7825
basic angle = tanˉ¹ 2.7825 = 70.23°
θ = 70.23°, 180° + 70.23°
θ = 70.23°, 250.23°

(d)
sin 
θ = -0.8537
basic angle = sinˉ¹ 0.8537 = 58.62°
θ = 180° + 58.62°, 360° – 58.62°
θ = 238.62°, 301.38°
 

(e)
sin 2
θ = 0.5293
basic angle = 31.96°
0° < θ  < 360°
0° < 2θ  < 720°
2θ = 31.96°, 180° – 31.96°, 360° + 31.96°, 360° + 180° – 31.96°
2θ = 31.96°, 148.04°, 391.96°, 508.04°
θ = 15.98°, 74.02°, 195.98°, 254.02°

Short Question 9 & 10


Question 9:
Given that sin θ = 3 5 , where θ is an acute angle, without using tables or a calculator, find the values of
(a) sin (180º + θ),
(b) cos (180º – θ),
(c) tan (360º + θ).

Solution:
(a)


sin θ = 3 5 cos θ = 4 5 tan θ = 3 4

sin (180º + θ)
= sin 180º cos θ + cos 180º sin θ
= (0) cos θ + (– 1) sin θ
= – sin θ
= 3 5

(b)
cos (180º – θ)
= cos 180º cos θ + sin 180º sin θ
= (– 1) cos θ + (0) sin θ
= – cos θ
4 5

(c)
tan ( 360 + θ ) = tan 360 + tan θ 1 tan 360 tan θ = 0 + tan θ 1 ( 0 ) ( tan θ ) = tan θ = 3 4



Question 10:
Prove each of the following trigonometric identities.
(a) cot2 x – cot2 x cos2x = cos2 x
(b) sec x sec x cos x = cos e c 2 x

Solution:
(a)
LHS: cot 2 x cot 2 x cos 2 x = cot 2 x ( 1 cos 2 x ) = cot 2 x ( s i n 2 x ) = cos 2 x s i n 2 x ( s i n 2 x ) = cos 2 x (RHS)


(b)
LHS: sec x sec x cos x = 1 cos x 1 cos x cos x = 1 cos x 1 cos x cos 2 x cos x = 1 cos x 1 cos 2 x cos x = 1 cos x × cos x 1 cos 2 x = 1 1 cos 2 x = 1 s i n 2 x = cos e c 2 x (RHS)

5.1 Positive and Negative Angles

5.1 Positive and Negative Angles
1. Positive angles are angles measure in an anticlockwise rotate from the positive x-axis about the origin, O.

2. Negative angles are angles measured in a clockwise rotation from the positive x-axis about the origin O.


3. One complete revolution is 360° or 2π radians.


Example:
Show each of the following angles on a separate diagram and state the quadrant in which the angle is situated.
(a) 410°
(b) 890°
(c) 22 9 π radians  
(d) 10 3 π radians
(e) –60o
(f) –500°
(g)3 1 4 π radians

Solution:
(a)
410° = 360° + 50°
Based on the above circular diagram, the positive angle of 410° is in the first quadrant.


(b)
890° = 720° + 170°
Based on the above circular diagram, the positive angle of 890° is in the second quadrant.


(c)

22 9 π rad = ( 2 π + 4 9 π ) rad = 360 o + 80 o
Based on the above circular diagram, the positive angle of 22 9 π radians  is in the first quadrant.


(d)
10 3 π rad = ( 3 π + 1 3 π ) rad = 540 o + 60 o
Based on the above circular diagram, the positive angle of 10 3 π radians  is in the third quadrant.



(e)
Based on the above circular diagram, the negative angle of –60° is in the fourth quadrant.



(f)
–500° = –360° – 140°
Based on the above circular diagram, the negative angle of –500° is in the third quadrant.


(g)

3 1 4 π rad = ( 3 π 1 4 π ) rad = 540 o 45 o
Based on the above circular diagram, the negative angle of 3 1 4 π radians  is in the second quadrant.


Short Question 4 – 6


Question 4:
Solve the equation 3 sin A cos A – cos A = 0 for 0°  A  360°.

Solution:
3 sin A cos A – cos A = 0
cos A (3 sin A – 1) = 0
cos A = 0   or   sin A

cos A = 0
A = 90°, 270°

sin A
Basic angle = 19°28'
A = 19°28', 180° – 19°28'
A = 19°28', 160°32'

Hence A = 19°28', 90°, 160°32', 270°.



Question 5:
Solve the equation 4 sin (x – π) cos (x – π) = 1 for 0ox ≤ 360o.
 
Solution:
4 sin (x – π) cos (x – π) = 1
2 [2 sin (x – π) cos (x – π)] = 1
2 sin (x – π) cos (x – π) = ½
sin 2(x – π) = ½  ← (sin 2x= 2 sinx cosx)
sin 2(x – 180o) = ½  ← (π rad = 180o)
sin (2x – 360o) = ½
sin 2x cos 360o – cos 2x sin 360o = ½
sin 2x (1) – cos 2x (0)  = ½  ← (cos 360o = 1, sin 360o = 0)
sin 2x = ½
basic angle = 30o  ← (special angle, sin 30o= ½)
2x = 30o, 150o, 390o, 510o
x = 15o, 75o, 195o, 255o

5.3.4 Sketching Graphs of Trigonometric Functions (Part 3)


5.3.4 Sketching Graphs of Trigonometric Functions (Part 3)
Example 2:
(a) Sketch the graph y = –½ cos x for 0 ≤ x 2π.
(b) Hence, using the same axes, sketch a suitable graph to find the number of solutions to the equation π 2 x + cos x = 0 for 0 ≤ x 2π.
State the number of solutions.

Solution:
(a)



(b)


π 2 x + cos x = 0 π 2 x = cos x π 4 x = 1 2 cos x Multiply both sides by 1 2 y = π 4 x y = 1 2 cos x

The suitable graph to draw is y = π 4 x .  
x
π 2
π
2π
y = π 4 x
½
¼
From the graphs, there are two points of intersection for 0 ≤ x ≤ 2π.
Number of solutions = 2.


Basic Trigonometric Identities


5.4 Basic Trigonometric Identities

Three basic trigonometric identities are:

sin2 x + cos2 x = 1
tan2 x + 1 = sec2 x
cot2 x + 1 = cosec2 x

[adinserter block="3"]
Example 1 (To Prove Trigonometric Identities which involve the Three Basic Identities)
Prove each of the following trigonometric identities.
(a) sin2 x – cos2 x = 1 – 2 cos2 x
(b) (1 – cosec2 x) (1– sec2 x) = 1

Solution:
(a)
sin2 x– cos2 x = 1 – 2 cos2x
LHS: sin2 x – cos2 x
= 1 – cos2 x – cos2 x
= 1 – 2 cos2 x (RHS)
 
(b)
( 1 cosec 2 x ) ( 1 sec 2 x ) = 1 LHS: ( 1 cosec 2 x ) ( 1 sec 2 x ) = ( cot 2 x ) ( tan 2 x ) = ( cot 2 x ) ( tan 2 x ) = ( 1 tan 2 x ) tan 2 x = 1 (RHS)



Example 2 (To Solve Trigonometric Equations which involve the Three Basic Identities)
Solve the following trigonometric equations for 0ox ≤ 360o.
(a) sin2 x cos x + 1 = cos x
(b) 2 cosec2 x – 5 cot x = 0

Solution:
(a)
sin2 cos x + 1 = cos x
(1 – cos2 x) cos x + 1 = cos x
cos x – cos3 x + 1 = cos x
cos3 x = 1
cos x = 1
x = 0o, 360o

(b)
2 cosec2 x – 5 cot x = 0
2 (1 + cot2 x) – 5 cot x = 0
2 + 2 cot2 x – 5 cot x = 0
2 cot2 x – 5 cot x + 2 = 0
(2 cot x – 1) (cot x – 2) = 0
cot x= ½ or cotx = 2
cot x= ½ or cot x = 2
tan x = 2 tan x = ½
x =63.43o, 243.43o   x = 26.57o, 206.57o

(Note: tangent is positive in the first and third quadrants)

Thus, x = 26.57o, 63.43o, 206.57o, 243.43o