(Long Questions) – Question 3


Question 3:


The diagram shows a trapezium PQRS. PS is parallel to QR and QRS is obtuse. Find
(a) the length, in cm, of QS,
(b) the length, in cm, of RS,
(c) QRS,
(d) the area, in cm2, of triangle QRS.


Solution:
(a)
Q S sin P = P S sin Q Q S sin 85 = 13.1 sin 28 Q S = 13.1 × sin 85 sin 28 Q S = 27.8  cm

(b)
 RQS = 180o – 85o – 28o
 RQS = 67o
Using cosine rule,
RS2 = QR2 + QS2 – 2 (QR)(QS) RQS
RS2 = 6.42 + 27.82 – 2 (6.4)(27.8) cos 67o
RS2 = 813.8 – 139.04
RS2 = 674.76
RS = 25.98 cm

(c)
Using cosine rule, Q S 2 = Q R 2 + R S 2 2 ( Q R ) ( R S ) cos Q R S 27.8 2 = 6.4 2 + 25.98 2 2 ( 6.4 ) ( 25.98 ) cos Q R S 772.84 = 715.92 332.54 cos Q R S cos Q R S = 715.92 772.84 332.54 cos Q R S = 0.1712 Q R S = 99.86

(d)
Area of triangle QRS
= ½ (QR)(RS) sin R
= ½ (6.4) (25.98) sin 99.86o
= 81.91 cm2

(Long Questions) – Question 2


Question 2:
In the diagram below, ABC is a triangle. AGJB, AHC and BKC are straight lines. The straight line JK is perpendicular to BC.


It is given that BG= 40cm, GA = 33 cm, AH = 30 cm, GAH = 85o and JBK= 45o.
(a) Calculate the length, in cm of
  i.      GH
    ii.   HC
(b) The area of triangle GAH is twice the area of triangle JBK. Calculate the length, in cm, 
  of BK.
(c) Sketch triangle  which has a different shape from triangle ABC such that, A’B’ = AB
 A’C’ = AC and A’B’C’ = ABC.


Solution:
(a)(i)
Using cosine rule,
GH2 = AG2 + AH2 – 2 (AG)(AH) GAH
GH= 332+ 302 – 2 (33)(30) cos 85o
GH2 = 1089 + 900 – 172.57
GH2 = 1816.43
GH = 42.62 cm

(a)(ii)
A C D = 180 45 85 = 50 Using sine rule, A C sin 45 = 73 sin 50 A C = 73 × sin 45 sin 50 A C = 67.38  cm H C = 67.38 30 = 37.38  cm


(b)
Area of  Δ   G A H = 1 2 ( 33 ) ( 30 ) sin 85 = 493.12  cm 2 Let length of  B K = J K = x ×  Area of  Δ   J B K  = Area of  Δ   G A H 2 × [ 1 2 ( x ) ( x ) ] = 493.12 x 2 = 493.12 x = 22.21  cm B K = 22.21  cm


(c)

(Long Questions) – Question 1


Question 1:

The diagram shows a quadrilateral ABCD. The area of triangle BCD is 12 cm2 and BCD is acute. Calculate
(a) ∠BCD,
(b) the length, in cm, of BD,
(c) ABD,
(d) the area, in cm2, quadrilateral ABCD.


Solution:
(a) Given area of triangle BCD = 12 cm2
½ (BC)(CD) sin C = 12
½ (7) (4) sin C = 12
14 sin C = 12
sin C = 12/14 = 0.8571
C = 59o
BCD = 59o
 
(b)
Using cosine rule,
BD2 = BC2 + CD2 – 2 (7)(4) cos 59o
BD2 = 72+ 42 – 2 (7)(4) cos 59o
BD2 = 65 – 28.84
BD2 = 36.16
BD = 36.16
BD = 6.013 cm

(c)
Using sine rule,
A B sin 35 = 6.013 sin A 10 sin 35 = 6.013 sin A sin A = 6.013 × sin 35 10 sin A = 0.3449 A = 20.18 A B D = 180 35 20.18 A B D = 124.82

(d)

Area of quadrilateral ABCD
= Area of triangle ABD + Area of triangle BCD
= ½ (AB)(BD) sin B + 12 cm
= ½ (10) (6.013) sin 124.82 + 12
= 24.68 + 12
= 36.68 cm²

10.3 Area of Triangle


10.3 Area of Triangle

Example:
Calculate the area of the triangle above.

Solution:
A r e a = 1 2 a b sin C A r e a = 1 2 ( 7 ) ( 4 ) sin 40 o A r e a = 9  cm 2



Example:

Diagram above shows a triangle ABC, where AC = 8 cm and ∠C = 32o. Point D lies on straight line BC where BD = 10 cm and ∠ADB = 70o . Calculate
(a) the length, in cm, of CD,
(b) the area, in cm2 of ∆ ADC,
(c) the area, in cm2 of ∆ ABC,
(d) the length, in cm, of AB.

Solution:
(a)
ADC+ 70 o = 180 o ADC= 110 o CAD= 180 o 110 o 32 o CAD= 38 o Using Sine Rule, 8 sin 110 o = CD sin 38 o CDsin 110 o =8sin 38 o CD( 0.940 )=8( 0.616 ) CD=5.243

(b)
Area of ADC = 1 2 ( 8 )( 5.243 )sin 32 o =20.972( 0.530 ) =11.12  cm 2

(c)
Area of ABC = 1 2 ( 8 )( 10+5.243 )sin 32 o =60.972( 0.530 ) =32.315  cm 2

(d)
Use Cosine Rule for ABC, A B 2 = 15.243 2 + 8 2 2( 15.243 )( 8 )cos 32 o A B 2 =232.35+64206.83 A B 2 =89.52 AB=9.462 cm

10.2 The Cosine Rule


10.2 The Cosine Rule



The cosine rule can be used when
(i) two sides and the included angle, or
(ii) three sides of a triangle are given.


(A) If you know 2 sides and 1 angle between them [included angle] ⇒ Cosine rule

Example:


Calculate the length of AC, x, in cm for the triangle above.

Solution:
b 2 = a 2 + c 2 2 a c cos B x 2 = 4 2 + 7 2 2 ( 4 ) ( 7 ) cos 50 x 2 = 16 + 49 56 ( 0.6428 ) x 2 = 65 35.997 x 2 = 29.003 x = 5.385  cm


(B) If you know 3 sides ⇒ Cosine rule

Example:


Calculate ÐBAC for the triangle above.

Solution:
cos A = b 2 + c 2 a 2 2 b c cos B A C = 7 2 + 6 2 8 2 2 ( 7 ) ( 6 ) cos B A C = 0.25 B A C = cos 1 0.25 B A C = 75.52 o

10.1 The Sine Rule


10.1 The Sine Rule
In a triangle ABC in which the sides BC, CA and AB are denoted by a, b, and c as shown, and A, B, C are used to denote the angles at the vertices A, B, C respectively,



The sine rule can be used when
(i) two sides and one non-included angle or
(ii) two angles and one opposite side are given.


(A) If you know 2 angles and 1 side ⇒ Sine rule

Example:


Calculate the length, in cm, of AB.

Solution:
∠ACB = 180o – (50o + 70o) = 60o
A B sin 60 o = 4 sin 50 o A B = 4 × sin 60 o sin 50 o A B = 4.522  cm


(B) If you know 2 sides and 1 angle (but not between them) ⇒ Sine rule

Example:

Calculate ∠ACB.

Solution:
28 sin 54 o = 26 sin A C B sin A C B = 26 × sin 54 o 28 sin A C B = 0.7512 A C B = 48.7 o


(C) Case of ambiguity (2 possible triangles)

Example

Calculate ∠ACBθ.

Solution:
Two possible triangle with these measurement
AB = 26cm BC = 28 cm Ð BAC = 54o
26 sin θ = 28 sin 54 o sin θ = 0.7512 θ = sin 1 0.7512 θ = 48.7 o , 180 o 48.7 o θ = 48.7 o  (Acute angle) ,   131.3 o  (Obtuse angle)

Long Questions (Question 2 & 3)


Question 2:
Given the equation of a curve is:
y = x2 (x – 3) + 1
(a) Find the gradient of the curve at the point where x = –1.
(b) Find the coordinates of the turning points.

Solution:
(a)
y= x 2 ( x3 )+1 y= x 3 3 x 2 +1 dy dx =3 x 2 6x When x=1 dy dx =3 ( 1 ) 2 6( 1 )      =9 Gradient of the curve is 9.

(b)
At turning points, dy dx =0
3x2 – 6x = 0
x2 – 2x = 0
x (x – 2) = 0
x = 0, 2

y = x2 (x – 3) + 1
When x = 0, y = 1
When x = 2,
y = 22 (2 – 3) + 1
y = 4 (–1) + 1 = –3
Therefore, coordinates of the turning points are (0, 1) and (2, –3).


Question 3:
It is given the equation of the curve is y = 2x (1 – x)4 and the curve pass through T(2, 4).
Find
(a) the gradient of the curve at point T.
(b) the equation of the normal to the curve at point T.

Solution:
(a)
y=2x ( 1x ) 4 dy dx =2x×4 ( 1x ) 3 ( 1 )+ ( 1x ) 4 ×2     =8x ( 1x ) 3 +2 ( 1x ) 4 At T( 2,4 ),x=2. dy dx =16( 1 )+2( 1 )     =16+2     =18

(b)
Equation of normal: y y 1 = 1 dy dx ( x x 1 ) y4= 1 18 ( x2 ) 18y72=x+2 x+18y=74

Long Questions (Question 1)


Question 1:
The curve y = x3 – 6x2 + 9x + 3 passes through the point P (2, 5) and has two turning points, A (3, 3) and B.
Find 
(a) the gradient of the curve at P.
(b) the equation of the normal to the curve at P.
(c) the coordinates of and determine whether B is a maximum or the minimum point.

Solution:
(a)
y = x3 – 6x2 + 9x + 3
dy/dx = 3x2– 12x + 9
At point P (2, 5),
dy/dx = 3(2)2 – 12(2) + 9 = –3

Gradient of the curve at point P = –3.

(b)
Gradient of normal at point P = 1/3
Equation of the normal at P (2, 5):
yy1 = m (x – x1)
y – 5 = 1/3 (x – 2)
3y – 15 = x – 2
3y = x + 13

(c) 
At turning point, dy/dx = 0.
3x2 – 12x + 9 = 0
x2 – 4x + 3 = 0
(x – 1)( x – 3) = 0
x – 1 = 0  or x – 3 = 0
x = 1  x = 3 (Point A)

Thus at point B:
x = 1
y = (1)3– 6(1)2 + 9(1) + 3 = 7

Thus, coordinates of = (1, 7)

when  x = 1 ,   d 2 y d x 2 = 6 x 12 d 2 y d x 2 = 6 ( 1 ) 12 d 2 y d x 2 = 6 < 0 Since  d 2 y d x 2 < 0 ,   B  is a maximum point .

Short Questions (Question 22 – 25)


Question 23:
Given that y = 15 x + 24 x 3 ,

(a) Find the value of d y d x when x = 2,
(b) Express in terms of k, the approximate change in when x changes from 2 to
  2 + k, where k is a small change.

Solution:
(a)
y = 15 x + 24 x 3 y = 15 x + 24 x 3 d y d x = 15 72 x 4 d y d x = 15 72 x 4 When  x = 2 d y d x = 15 72 2 4 = 10.5

(b)
Approximate change in  y  to  x  in terms of  k , δ y δ x d y d x δ y = d y d x × δ x δ y = 10.5 × ( 2 + k 2 ) δ y = 10.5 k



Question 24:
If the radius of a circle increases from 4 cm to 4.01 cm, find the approximate increase in the area.

Solution:
Area of circle,  A = π r 2 d A d r = 2 π r Approximate increase in the area to radius, δ A δ r d A d r δ A = d A d r × δ r δ A = ( 2 π r ) × ( 4.01 4 ) δ A = [ 2 π ( 4 ) ] × ( 0.01 ) δ A = 0.08 π  cm 2



Question 25:
Given that y =3t+ 5t2 and x = 5t 1.
(a) Find d y d x  in terms of x,
(b) If increases from 5 to 5.01, find the small increase in t.

Solution:
y = 3 t + 5 t 2 d y d t = 3 + 10 t x = 5 t 1 d x d t = 5

(a)
d y d x = d y d t × d t d x d y d x = ( 3 + 10 t ) × 1 5 d y d x = 3 + 10 ( x + 1 5 ) 5 x = 5 t 1 t = x + 1 5 d y d x = 3 + 2 x + 2 5 d y d x = 5 + 2 x 5

(b)
Small increase in  t  to  x , δ t = d t d x × δ x δ t = 1 5 × ( 5.01 5 ) δ t = 0.002

Short Questions (Question 20 – 22)


Question 20:
The volume of water V cm3, in a container is given by   V = 1 5 h 3 + 7 h , where h cm is the height of the water in the container. Water is poured into the container at the rate of 15cm3s-1. Find the rate of change of the height of water in cms-1, at the instant when its height is 3cm. 

Solution:

V = 1 5 h 3 + 7 h d V d h = 3 5 h 2 + 7 = 3 h 2 + 35 5 Given  d V d t = 15 h = 3 Rate of change of the height of water = d h d t d h d t = d h d V × d V d t Chain rule d h d t = 5 3 h 2 + 35 × 15 d h d t = 75 62  cms 1



Question 21:
A wire of length 88 cm is bent to form a circle. When the wire is heated, the length increases at the rate of 0.3 cms-1.
(a) Calculate the rate of change in the radius of the circle.
(b) Hence, calculate the radius of the circle after 5s.

Solution:
Length of circumference of a circle,  L = 2 π r d L d r = 2 π

(a)
Given  d L d t = 0.3 Rate of change in the radius of the circle = d r d t d r d t = d r d L × d L d t d r d t = 1 2 π × 0.3 d r d t = 0.0477  cms 1

(b)
2 π r = 88 r = 88 2 π = 44 π Hence, the radius of the circle after  5 s = 44 π + 5 ( 0.0477 ) = 14.24  cm



Question 22:

The diagram shows a conical container with diameter 0.8m and height 0.6m. Water is poured into the container at a constant rate of 0.02m3s-1. Calculate the rate of change of the height of the water level when the height of water level is 0.5m.

Solution:

Let,  h  = height of the water level r  = radius of the water surface V  = volume of the water r h = 0.4 0.6 Concept of similar triangles r h = 2 3 r = 2 3 h Volume of water,  V = 1 3 π r 2 h V = 1 3 π ( 2 3 h ) 2 h V = 4 27 π h 3 d V d h = ( 3 ) 4 27 π h 2 d V d h = 4 9 π h 2 The rate of change of the height of the water level when the height of water level is 0 .5  m = d h d t . d h d t = d h d V × d V d t Chain rule d h d t = 9 4 π h 2 × 0.02 Given  d V d t = 0.02 d h d t = 9 4 π ( 0.5 ) 2 × 0.02 d h d t = 0.0572   m s 1