Long Question (Question 9)


Question 9 (7 marks):
Diagram shows the plan of a rectangular garden ABCD. The garden consists of a semicircular pond ATD and grassy area ABCDT.
It is given that DC = 6y metre and BC = 7x metre, xy. The area of the rectangular garden ABCD is 168 metre2 and the perimeter of the grassy area is 60 metre. The pond with uniform depth contains 15.4 metre3 of water.
By using  π=227 , find the depth, in metre, of water in the pond.

Solution:
Area of ABCD=168(6y)(7x)=16842xy=168xy=4...................(1)Perimeter of grassy area=606y+6y+7x+(12×2×22117×7x2)=6012y+18x=602y+3x=10...................(2)From (1):xy=4x=4y...................(3)Substitute (3) into (2):2y+3(4y)=102y2+12=10yy25y+6=0(y2)(y3)=0y2=0  y=2   or    y3=0y=3Substitute the values of y into (3):When y=2x=42=2 (ignored, xy)When y=3x=43Given volume of water=15.412(227)(7x2)2d=15.412(227)[7(43)2]2d=15.4117(143)2d=15.43089d=15.4d=0.45 mThus, the depth of water in the pond is 0.45 m.


Long Questions (Question 5)


Question 5 (7 marks):
It is given that the equation of a curve is y=5x2.  
(a) Find the value of dydx when x = 3.
(b) Hence, estimate the value of 5(2.98)2.  

Solution:
(a)
y=5x2=5x2dydx=10x3=10x3When x=3dydx=1033=1027


(b)
δx=2.983=0.02δy=dydx.δx=1027×(0.02)=0.007407Values of 5(2.98)2=y+δy=5x2+(0.007407)=532+(0.007407)=0.56296


Long Questions (Question 4)


Question 4 (6 marks):
Diagram shows the front view of a part of a roller coaster track in a miniature park.

The curve part of the track of the roller coaster is represented by an equation y=164x3316x2 , with point A as the region.
Find the shortest vertical distance, in m, from the track to ground level.

Solution:
y=164x3316x2 ............... (1)dydx=3(164)x22(316)x1=364x238xAt turning point, dydx=0364x238x=0x(364x38)=0x=0  or364x38=0364x=38x=38×643x=8Substitute values of x into equation (1):When x=0,y=164(0)3316(0)2y=0When x=8,y=164(8)3316(8)2y=4Thus, turning points : (0, 0) and (8,4)

dydx=364x238xd2ydx2=2(364)x38  =332x38When x=0,d2ydx2=332(0)38  =38(<0)(0, 0) is maximum point.When x=8,d2ydx2=332(8)38  =38(>0)(8,4) is minimum point.Shortest vertical distance between track and ground level is at the minimum point.Shortest vertical distance=54=1 m


Long Questions (Question 10)


Question 10 (8 marks):
Diagram shows a circle and a sector of a circle with a common centre O. The radius of the circle is r cm.


It is given that the length of arc PQ and arc RS are 2 cm and 7 cm respectively. QR = 10 cm.
[Use θ = 3.142]
Find
(a) the value of r and of θ,
(b) the area, in cm2, of the shaded region.


Solution
:

(a)
Length of arc PQ=2 cmrθ=2 ................. (1)Length of arc RS=7 cm(r+10)θ=7rθ+10θ=7 ................. (2)Substitute (1) into (2):2+10θ=710θ=5θ=510θ=0.5 radFrom(1):When θ=0.5 rad,r×0.5=2r=4

(b)
OS=OR=4+10=14 cmArea of shaded region=area of ΔORS  area of sector OPQ=(12×142×sin0.5 rad)(12×42×0.5)=42.981 cm2


Long Questions (Question 9)


Question 9 (7 marks):
Mathematics Society of SMK Mulia organized a competition to design a logo for the society.


Diagram shows the circular logo designed by Adrian. The three blue coloured regions are congruent. It is given that the perimeter of the blue coloured region is 20π cm.
[Use π = 3.142]
Find
(a) the radius, in cm, of the logo to the nearest integer,
(b) the area, in cm2, of the yellow coloured region.

Solution:
(a)
6 arcs =20π6rθ=20π6r[60o×π180o3]=20π2πr=20πr=10 cm

(b)

Area of yellow coloured region=3[area of triangle OAB]6[area of segment]=3[12absinC]6[12r2(θsinθ)]=3[12(10)(10)sin120o]6[12(10)2(θsinθ)]=3(43.3013)6[50(1.0473sin1.0473)]change to rad modeθ=60o×3.142180o=1.0473=129.90396(9.0612)=129.903954.3672=75.54 cm2


Long Questions (Question 10)


Question 10 (7 marks):
Solution by scale drawing is not accepted.
Diagram shows the locations of town M and town N drawn on a Cartesian plane.


PQ
is a straight road such that the distance from town M and town N to any point on the road is always equal.
(a) Find the equation of PQ.

(b) Another straight road, ST with an equation y = 2x + 7 is to be built.
(i) A traffic light is to be installed at the crossroads of the two roads.
Find the coordinates of the traffic light.
(ii) Which of the two roads passes through town L (43,1)?

Solution:
(a)
T(x,y) is a point on PQ.TM=TN[x(4)2]+[y(1)]2=(x2)2+(y1)2(x+4)2+(y+1)2=(x2)2+(y1)2(x+4)2+(y+1)2=(x2)2+(y1)2x2+8x+16+y2+2y+1=x24x+4+y22y+18x+2y+17+4x+2y5=012x+4y+12=03x+y+3=0Equation of PQ:3x+y+3=0


(b)(i)
y=2x+7  ............ (1)3x+y+3=0 ............ (2)Substitute (1) into (2):3x+2x+7+3=05x=10x=2When x=2,From (1),y=2(2)+7=3Coordinates of traffic light=(2,3).


(b)(ii)
L(43,1):x=43,y=1The equation of ST:y=2x+7Left hand side: y=1Right hand side: 2(43)+7=413Thus, the road y=2x+7 does not pass through L.The equation of PQ:3x+y+3=0Left hand side: 3x+y+3=3(43)+1+3   =4+4=0Right hand side=0Left hand side=Right hand sideThus, the road 3x+y+3=0passes through L.


Long Questions (Question 9)


Question 9 (6 marks):
Solution by scale drawing is not accepted.
Diagram shows a triangle OCD.
Diagram

(a) Given the area of triangle OCD is 30 units2, find the value of h.

(b)
Point Q (2, 4) lies on the straight line CD.
(i) Find CQ : QD.
(ii) Point P moves such that PD = 2 PQ.
  Find the equation of the locus P.

Solution:
(a)
Given Area of  OCD = 3012 |0  h6 0  2   8  00|=30|(0)(2)+(h)(8)+(6)(0)(0)(h)(2)(6)(8)(0)|=60|0+8h+00+120|=60|8h+12|=608h+12=608h=48h=6or 8h+12=608h=72h=9(ignore)


(b)(i)

[6(m)+(6)(n)m+n, 2(m)+(8)(n)m+n]=(2, 4)6m6nm+n=26m6n=2m+2n4m=8nmn=84mn=212m+8nm+n=42m+8n=4m+4n2m=4nmn=42mn=21Thus, CQ=QD=2:1


(b)(ii)
PD=2PQ(x6)2+(y2)2=2(x2)2+(y4)2(x6)2+(y2)2=4[(x2)2+(y4)2]x212x+36+y24y+4=4[x24x+4+y28y+16]x212x+36+y24y+4=4x216x+16+4y232y+64The equation of locus P:3x2+3y24x28y+40=0


SPM Practice (Long Question)


Question 4:
The function f is denoted by f:x1+x1x,x1. Find f2,f3,f4 and hence write down the functions f51 and f52.

Solution:
f(x)=1+x1x,x1f2(x)=f[f(x)]=f(1+x1x)         =1+(1+x1x)1(1+x1x)=1x+1+x1x1x1x1x         =22x=1xf3(x)=f[f2(x)]=f(1x)         =1+(1x)1(1x)=x1xx+1x         =x1x+1f4(x)=f[f3(x)]=f(x1x+1)          =1+(x1x+1)1(x1x+1)=x+1+x1x+1x+1x+1x+1          =2x2=xf5(x)=f[f4(x)]=f(x)=1+x1x(recurring)


SPM Practice (Long Question)


Question 2:
The function f and g is defined by
f( x )=3x2 g( x )= 3 x ,x0 Find (a)  f 1 ( 2 ), (b) gf( 3 ), (c) function h if hf( x )=3x+2, (d) function k if fk( x )=4x7.

Solution:
(a)
Let  f 1 ( 2 )=x, thus  f( x )=2       3x2=2            3x=4              x= 4 3 f 1 ( 2 )= 4 3

(b)
gf( 3 )=g[ 3( 3 )2 ]            =g( 11 )            = 3 11

(c)
h[ f( x ) ]=3x+2 h( 3x2 )=3x+2 Let y=3x2 thus     x= y+2 3      h( y )=3( y+2 3 )+2             =y+2+2             =y+4  h( x )=x+4

(d)
f[ k( x ) ]=4x7 3k( x )2=4x7 3k( x )=4x5 k( x )= 4x5 3

SPM Practice (Long Question)


Question 6 (8 marks):
It is given that g : x → 2x – 3 and h : x → 1 – 3x.
(a) Find
(i) h (5)
(ii) the value of k if  g( k+2 )= 1 7 h( 5 ),
(iii) hg(x).

(b)
Hence, sketch the graph of y = | hg(x) | for –1 ≤ x ≤ 3.
State the range of y.

Solution:
(a)(i)
h( x )=13x h( 5 )=13( 5 )    =14

(a)(ii)
g( x )=2x3 g( k+2 )= 1 7 h( 5 ) 2( k+2 )3= 1 7 ( 14 ) 2k+43=2 2k=3 k= 3 2

(a)(iii)
g( x )=2x3, h( x )=13x hg( x )=h( 2x3 )  =13( 2x3 )  =16x+9  =106x

(b)
y = |hg(x)|,
y = |10 – 6x|
Range of y : 0 ≤ y ≤ 16