1.6.4 Function, SPM Practice (Short Question)


Question 10 (4 marks):
Given the function g : x → 2x – 8, find
( a )  g 1 ( x ), ( b ) the value of p such that  g 2 ( 3p 2 )=30.

Solution:
(a)
Let y=g( x ) =2x8 2x8=y  2x=y+8    x= y+8 2 Thus,  g 1 ( x )= x+8 2

(b)
g( x )=2x8 g 2 ( x )=g[ g( x ) ]  =g( 2x8 )  =2( 2x8 )8  =4x168  =4x24 g 2 ( 3p 2 )=30 4( 3p 2 )24=30 6p=54 p=9



Question 11 (4 marks):
Diagram 9 shows the relation between set A, set B and set C.

Diagram 9

It is given that set A maps to set B by the function x+1 2 and maps to set C by fg : xx2 + 2x + 4.
(a) Write the function which maps set A to set B by using the function notation.
(b) Find the function which maps set B to set C.


Solution:

(a)
g:x x+1 2

(b)

g( x )= x+1 2 fg( x )= x 2 +2x+4 f[ g( x ) ]= x 2 +2x+4 f( x+1 2 )= x 2 +2x+4 Let  x+1 2 =y x+1=2y x=2y1 f( y )= ( 2y1 ) 2 +2( 2y1 )+4 f( y )=4 y 2 4y+1+4y2+4 f( y )=4 y 2 +3 f( x )=4 x 2 +3 Thus, function which maps set B to set C is f( x )=4 x 2 +3

SPM Practice (Long Question)


Question 4:
The function f is denoted by f:x 1+x 1x ,x1.  Find  f 2 , f 3 , f 4  and hence write down the functions  f 51  and  f 52 .

Solution:
f( x )= 1+x 1x ,x1 f 2 ( x )=f[ f( x ) ]=f( 1+x 1x )          = 1+( 1+x 1x ) 1( 1+x 1x ) = 1x+1+x 1x 1x1x 1x          = 2 2x = 1 x f 3 ( x )=f[ f 2 ( x ) ]=f( 1 x )          = 1+( 1 x ) 1( 1 x ) = x1 x x+1 x          = x1 x+1 f 4 ( x )=f[ f 3 ( x ) ]=f( x1 x+1 )           = 1+( x1 x+1 ) 1( x1 x+1 ) = x+1+x1 x+1 x+1x+1 x+1           = 2x 2 =x f 5 ( x )=f[ f 4 ( x ) ]=f( x )= 1+x 1x ( recurring ) f 51 ( x )= f 3 [ f 48 ( x ) ]= f 3 ( x )              = x1 x+1 f 52 ( x )= f 4 [ f 48 ( x ) ]= f 4 ( x )=x


SPM Practice (Long Question)


Question 2:
The function f and g is defined by
f( x )=3x2 g( x )= 3 x ,x0 Find (a)  f 1 ( 2 ), (b) gf( 3 ), (c) function h if hf( x )=3x+2, (d) function k if fk( x )=4x7.

Solution:
(a)
Let  f 1 ( 2 )=x, thus  f( x )=2       3x2=2            3x=4              x= 4 3 f 1 ( 2 )= 4 3

(b)
gf( 3 )=g[ 3( 3 )2 ]            =g( 11 )            = 3 11

(c)
h[ f( x ) ]=3x+2 h( 3x2 )=3x+2 Let y=3x2 thus     x= y+2 3      h( y )=3( y+2 3 )+2             =y+2+2             =y+4  h( x )=x+4

(d)
f[ k( x ) ]=4x7 3k( x )2=4x7 3k( x )=4x5 k( x )= 4x5 3

SPM Practice (Long Question)


Question 6 (8 marks):
It is given that g : x → 2x – 3 and h : x → 1 – 3x.
(a) Find
(i) h (5)
(ii) the value of k if  g( k+2 )= 1 7 h( 5 ),
(iii) hg(x).

(b)
Hence, sketch the graph of y = | hg(x) | for –1 ≤ x ≤ 3.
State the range of y.

Solution:
(a)(i)
h( x )=13x h( 5 )=13( 5 )    =14

(a)(ii)
g( x )=2x3 g( k+2 )= 1 7 h( 5 ) 2( k+2 )3= 1 7 ( 14 ) 2k+43=2 2k=3 k= 3 2

(a)(iii)
g( x )=2x3, h( x )=13x hg( x )=h( 2x3 )  =13( 2x3 )  =16x+9  =106x

(b)
y = |hg(x)|,
y = |10 – 6x|
Range of y : 0 ≤ y ≤ 16





1.6.3 Function, SPM Practice (Short Question)


Question 7:
Diagram below shows the function g : xx – 2k, where k is a constant.

Find the value of k.

Solution:
Given g( 6 )=12   g( 6 )=62k  12=62k  2k=612    k=3



Question 8:
Diagram below shows the relation between set M and set N in the arrow diagram.

(a) Represent the relation in the form of ordered pairs.
(b) State the domain of the relation.

Solution
(a) Relation in the form of ordered pairs = {(–4, 8), (3, 3), (4, 8)}.
(b) Domain of the relation = {–4, 3, 4}.



Question 9 (3 marks):
Diagram shows the graph of the function f : x → |1 – 2x| for the domain –2 ≤ x ≤ 4.

Diagram

State
(a) the object of 7,
(b) the image of 3,
(c) the domain of 0 ≤ f(x) ≤ 5.


Solution:
(a)
The object of 7 is 4.

(b)
f (x) = |1 – 2x|
f (3) = |1 – 2(3)|
= |1 – 6|
= |–5|
= 5

The image of 3 is 5.

(c)
|1 – 2x| = 5
1 – 2x = ±5
Given when f(x) = 5, x = –2.

When f(x) = –5
1 – 2x = –5
2x = 6
x = 3

Domain: –2 ≤ x ≤ 3.


1.6.2 Function, SPM Practice (Short Question)


Question 4:
It is given the functions g(x) = 3x and h(x) = mnx, where m and n are constants.
Express m in terms of n such that hg(1) = 4.

Solution:
hg( x )=h( 3x )  =mn( 3x )  =m3nx hg( 1 )=4 m3n( 1 )=4 m3n=4 m=4+3n



Question 5:
Diagram below shows the relation between set M and set N in the graph form.
State
(a) the range of the relation,
(b) the type of the relation between set M and set N.

Solution
(a) Range of the relation = {p, r, s}.
(b) Type of the relation between set M and set N is many to one relation.



Question 6:
Diagram below shows the relation between set P and set Q.


State
(a) the object of 3,
(b) the range of the relation.

Solution
(a) The object of 3 is 7.
(b) The range of the relation is {–3, –1, 1, 3}.

SPM Practice (Long Question)


Question 3:
Given that f : xhx + k and f2 : x → 4x + 15.  
(a) Find the value of h and of k.
(b) Take the value of h > 0, find the values of x for which f (x2 ) = 7x

Solution:
(a)
Given f (x) = hx + k
f2 (x) = ff (x) = f (hx + k)
= h (hx + k) + k
= h2 x + hk + k

f2 (x) = 4x + 15
h2 x + hk + k = 4x + 15
h2 = 4
h = ± 2
when, h = 2
hk + k = 15
2k + k = 15
k = 5

When, h = –2
hk + k = 15
–2k + k = 15
k = –15

(b)
h > 0, h = 2, k = 5
Given f (x) = hx + k
f (x) = 2x + 5 f (x2 ) = 7x
2 (x2 ) + 5 = 7x
2x2 – 7x + 5 = 0
(2x – 5)(x –1) = 0
2x – 5 = 0 or x –1= 0
x = 5/2 x = 1

SPM Practice (Long Question)


Question 1:
The function f and g is defined by
f:x2x3 g:x 2 x ;x0
Find the expression for each of the following functions
(a) ff,
(b) gf,
(c) f-1 ,
Calculate the value of x such that ff(x) = gf(x).

Solution:
(a)
ff( x )=f[ f( x ) ]          =f( 2x3 )          =2( 2x3 )3          =4x9 ff:x4x9

(b)
gf( x )=g[ f( x ) ]           =g( 2x3 )           = 2 2x3 gf:x 2 2x3

(c)
Let  f 1 ( x )=y, thus  f( y )=x       2y3=x               y= x+3 2    f 1 ( x )= x+3 2 f 1 :x x+3 2 When ff( x )=gf( x ), 4x9= 2 2x3 ( 4x9 )( 2x3 )=2 8 x 2 30x+27=2 8 x 2 30x+25=0 ( 4x5 )( 2x5 )=0 4x5=0       or       2x5=0 x= 5 4              or              x= 5 2

SPM Practice (Short Question)


Question 1:
Given the function g : x → 3x – 2, find  
(a) the value of x when g(x) maps onto itself,
(b) the value of k such that g(2 – k) = 4k.

Solution:
(a)
  g( x )=x 3x2=x 3xx=2  2x=2 x=1

(b)
  g( x )=3x2 g( 2k )=4k 3( 2k )2=4k 63k2=4k    7k=4  k= 4 7



Question 2:
Given the functions f : xpx + 1, g : x → 3x – 5 and fg(x) = 3px + q.  
Express p in terms of q.

Solution:
f( x )=px+1, g( x )=3x5 fg( x )=p( 3x5 )+1  =3px5p+1 Given fg( x )=3px+q 3px5p+1=3px+q   5p+1=q    5p=q1   5p=1q p= 1q 5



Question 3:
Given the functions h : x → 3x + 1, and gh : x → 9x2 + 6x – 4, find  
(a) h-1 (x),
(b) g(x).

Solution:
(a)
Let  h 1 ( x )=y, thus  h( y )=x    3y+1=x 3y=x1   y= x1 3    h 1 ( x )= x1 3 h 1 :x x1 3

(b)
g[ h( x ) ]=9 x 2 +6x4 g( 3x+1 )=9 x 2 +6x4 Let y=3x+1 thus  x= y1 3  g( y )=9 ( y1 3 ) 2 +6( y1 3 )4 = 9 ( y1 ) 2 9 +2( y1 )4 = y 2 2y+1+2y24 = y 2 5  g( x )= x 2 5

Inverse Function Example 4


Example 4:
(a) If f:xx2, find  f 1 ( 5 ),
(b) if  f : x x + 9 x 5 ,   x 5 ,  find  f 1 ( 3 ) .

Solution:
(a)
f (x) = x– 2
Let y = f -1 (5)
f (y) = 5
y – 2 = 5
y = 7
therefore, f -1 (5) = 7

(b)
f ( x ) = x + 9 x 5 Let  y = f 1 ( 3 ) f ( y ) = 3 y + 9 y 5 = 3 y + 9 = 3 y 15 2 y = 24 y = 12 f 1 ( 3 ) = 7