9.9 Small Changes and Approximations

[adinserter block="3"]
9.9 Small Changes and Approximations


If  δ x  is very small,  δ y δ x  will be a good approximation of  d y d x , ,

This is very useful information in determining an approximation of the change in one variable given the small change in the second variable. 


[adinserter block="3"]
Example:
Given that y = 3x2 + 2x – 4. Use differentiation to find the small change in y when x increases from 2 to 2.02.

Solution:
y = 3 x 2 + 2 x 4 d y d x = 6 x + 2

The small change in is denoted by δy while the small change in the second quantity that can be seen in the question is the x and is denoted by δx.

δy δx dy dx δy= dy dx ×δx δy=( 6x+2 )×( 2.022 )δx=new xoriginal x δy=[ 6( 2 )+2 ]×0.02  Substitute x with the original value of x, i.e2. δy=0.28

Related Rates of Change


(A) Related Rates of Change


1. If two variables and y are connected by the equation y = f(x)


Notes:
If x changes at the rate of 5 cms -1   d x d t = 5
Decreases/leaks/reduces Þ  NEGATIVES values!!!


Example 1 (Rate of change of y and x)
Two variables, and y are related by the equation   y = 4 x + 3 x . Given that y increases at a constant rate of 2 units per second, find the rate of change of x when x = 3.

Solution:
y = 4 x + 3 x = 4 x + 3 x 1 d y d x = 4 3 x 2 = 4 3 x 2 d y d t = d y d x × d x d t 2 = ( 4 3 x 2 ) × d x d t when  x = 3 2 = ( 4 3 3 2 ) × d x d t 2 = 11 3 × d x d t d x d t = 6 11  unit  s 1


(B) Rates of Change of Volume, Area, Radius, Height and Length




(C) Rate of Change of Any Combination of Two Variables



9.7 Second-Order Differentiation, Turning Points, Maximum and Minimum Points

(A) Second-Order Differentiation

1. When a function y = x3 + x2 – 3x + 6 is differentiated with respect to x, the derivative  d y d x = 3 x 2 + 2 x 3

2. The second function   d y d x can be differentiated again with respect to x. This is called the second derivative of y with respect to and can be written as d 2 y d x 2 .

3. Take note that   d 2 y d x 2 ( d y d x ) 2 .

For example,
If y = 4x3 – 7x2 + 5x – 1,

The first derivative   d y d x = 12 x 2 14 x + 5

The second derivative    d 2 y d x 2 = 24 x 14

(B) Turning Points, Maximum and Minimum Points



(a) At Turning Points A and B,




(b) At Maximum Point A



(c) At Minimum Point B,




9.6 Gradients of Tangents, Equations of Tangent and Normal

9.6 Gradients of Tangents, Equations of Tangents and Normals



If A(x1, y1) is a point on a line y = f(x), the gradient of the line (for a straight line) or the gradient of the tangent of the line (for a curve) is the value of d y d x when x = x1.

(A) Gradient of tangent at A(x1, y1):




(B) Equation of tangent:




(C) Gradient of normal at A(x1, y1):






(D) Equation of normal :  




Example 1 (Find the Equation of Tangent)
Given that y = 4 ( 3 x 1 ) 2 . Find the equation of the tangent at the point (1, 1).

Solution:
y = 4 ( 3 x 1 ) 2 = 4 ( 3 x 1 ) 2 d y d x = 2.4 ( 3 x 1 ) 3 .3 d y d x = 24 ( 3 x 1 ) 3 At point  ( 1 ,  1 ) ,   d y d x = 24 [ 3 ( 1 ) 1 ] 3 = 24 8 = 3 Equation of tangent at point  ( 1 ,  1 )  is, y 1 = 3 ( x 1 ) y 1 = 3 x + 3 y = 3 x + 4


Example 2 (Find the Equation of Normal)
Find the gradient of the curve y = 7 3 x + 4 at the point (-1, 7). Hence, find the equation of the normal to the curve at this point.

Solution:
y = 7 3 x + 4 = 7 ( 3 x + 4 ) 1 d y d x = 7 ( 3 x + 4 ) 2 .3 d y d x = 21 ( 3 x + 4 ) 2 At point  ( 1 ,   7 ) ,   d y d x = 21 [ 3 ( 1 ) + 4 ] 2 = 21 Gradient of the normal  = 1 21 Equation of the normal is y y 1 = m ( x x 1 ) y 7 = 1 21 ( x ( 1 ) ) 21 y 147 = x + 1 21 y x 148 = 0

9.5 First Derivatives of Composite Function


(A) Differentiate Composite Function using Chain Rule


Example:
Differentiate y = (x2– 1)8 .

Solution:



(B) Differentiate Composite Function using Alternative Method
   - Easy Version

Example:
Differentiate y = (x2 – 1)8 .

Solution:
y = ( x 2 1 ) 8 d y d x = 8 ( x 2 1 ) 7 d d x ( x 2 1 ) d y d x = 8 ( x 2 1 ) 7 ( 2 x ) d y d x = 16 x ( x 2 1 ) 7


Practice 1:
Given that  y = 1 3 x 7 ,  find  d y d x

Solution:
y = 1 3 x 7 = ( 3 x 7 ) 1 d y d x = 1 ( 3 x 7 ) 2 .3 d y d x = 3 ( 3 x 7 ) 2


Practice 2:
Given that  y = 2 x 2 5 x + 1 ,  find  d y d x

Solution:
y = 2 x 2 5 x + 1 = ( 2 x 2 5 x + 1 ) 1 2 d y d x = 1 2 ( 2 x 2 5 x + 1 ) 1 2 ( 4 x 5 ) d y d x = 4 x 5 2 2 x 2 5 x + 1

9.4 First Derivatives of the Quotient of Two Polynomials

Find the Derivatives of a Quotient using Quotient Rule

Method 1: The Quotient Rule

Example:

 

Method 2: (Differentiate Directly)

Example:

Given that y = x 2 2 x + 1 , find d y d x  

Solution:

y = x 2 2 x + 1 d y d x = ( 2 x + 1 ) ( 2 x ) x 2 ( 2 ) ( 2 x + 1 ) 2 = 4 x 2 + 2 x 2 x 2 ( 2 x + 1 ) 2 = 2 x 2 + 2 x ( 2 x + 1 ) 2  

 

Practice 1:

  Given that y = 4 x 3 ( 5 x + 1 ) 3 , find d y d x


Solution:

  y = 4 x 3 ( 5 x + 1 ) 3 d y d x = ( 5 x + 1 ) 3 ( 12 x 2 ) 4 x 3 .3 ( 5 x + 1 ) 2 .5 [ ( 5 x + 1 ) 3 ] 2 = ( 5 x + 1 ) 3 ( 12 x 2 ) 60 x 3 ( 5 x + 1 ) 2 ( 5 x + 1 ) 6 = ( 12 x 2 ) ( 5 x + 1 ) 2 [ ( 5 x + 1 ) 5 x ] ( 5 x + 1 ) 6 = ( 12 x 2 ) ( 5 x + 1 ) 2 ( 1 ) ( 5 x + 1 ) 6 = 12 x 2 ( 5 x + 1 ) 4

 

 

 

 

9.4 First Derivatives of the Quotient of Two Polynomials

9.4 Find the Derivatives of a Quotient using Quotient Rule

Method 1

The Quotient Rule

Example:




Method 2 (Differentiate Directly)



Example:
Given that  y = x 2 2 x + 1 ,  find  d y d x

Solution:

y = x 2 2 x + 1 d y d x = ( 2 x + 1 ) ( 2 x ) x 2 ( 2 ) ( 2 x + 1 ) 2  = 4 x 2 + 2 x 2 x 2 ( 2 x + 1 ) 2 = 2 x 2 + 2 x ( 2 x + 1 ) 2



Practice 1:
Given that  y = 4 x 3 ( 5 x + 1 ) 3 ,  find  d y d x

Solution:
y = 4 x 3 ( 5 x + 1 ) 3 d y d x = ( 5 x + 1 ) 3 ( 12 x 2 ) 4 x 3 .3 ( 5 x + 1 ) 2 .5 [ ( 5 x + 1 ) 3 ] 2  = ( 5 x + 1 ) 3 ( 12 x 2 ) 60 x 3 ( 5 x + 1 ) 2 ( 5 x + 1 ) 6  = ( 12 x 2 ) ( 5 x + 1 ) 2 [ ( 5 x + 1 ) 5 x ] ( 5 x + 1 ) 6  = ( 12 x 2 ) ( 5 x + 1 ) 2 ( 1 ) ( 5 x + 1 ) 6  = 12 x 2 ( 5 x + 1 ) 4

Long Questions (Question 4)

Question 4:


In the diagram above, AXB is an arc of a circle centre O and radius 10 cm with ∠AOB = 0.82 radian. AYB is an arc of a circle centre P and radius 5 cm with ∠APB = θ. Calculate:

  1. the length of the chord AB,
  2. the value of θ in radians,
  3. the difference in length between the arcs AYB and AXB.

Solution:

(a)
  1 2 AB=sin0.41×10( Change the calculator to Rad mode ) 1 2 AB=3.99 The length of chord AB=3.99×2=7.98 cm.

(b)
  Let 1 2 θ=α, θ=2α sinα= 3.99 5 α=0.924 rad θ=0.924×2=1.848 radian.

(c)
Using s =
Arcs AXB = 10 × 0.82 = 8.2 cm
Arcs AYB = 5 × 1.848 = 9.24 cm

Difference in length between the arcs AYB and AXB
= 9.24 – 8.2
= 1.04 cm

 

 

 

Long Questions (Question 3)


Question 3:
Diagram below shows a sector QPR with centre P and sector POQ, with centre O.

It is given that OP = 17 cm and PQ = 8.8 cm.
[Use π = 3.142]
Calculate
(a) angle OPQ, in radians,
(b) the perimeter, in cm, of sector QPR,
(c) the area, in cm2, of the shaded region.

Solution:
( a ) OPQ=OQP x+x+30=180    2x=150   x=75 OPQ= 75×3.142 180    =1.3092 radians


( b ) Length of arc QR=rθ    =8.8×1.3092    =11.52 cm Perimeter of sector QPR =11.52+8.8+8.8 =29.12 cm


( c ) 30 o = 30×3.142 180 =0.5237 rad Area of segment PQ = 1 2 r 2 ( θsinθ ) = 1 2 × 17 2 ×( 0.5237sin30 ) = 1 2 ×289×( 0.52370.5 ) =3.4247  cm 2 Area of sector QPR = 1 2 r 2 θ = 1 2 × 8.8 2 ×1.3092 =50.692  cm 2 Area of shaded region =3.4247+50.692 =54.1167  cm 2