(Long Questions) – Question 6


Question 6:
Diagram below shows trapezium ABCD.
(a) Calculate
(i) ∠BAC.
(ii) the length, in cm, of AD.
(b) The straight line AB is extended to B’ such that BC = B’C.
(i) Sketch the trapezium AB’CD.
(ii) Calculate the area, in cm2, of ∆BB’C.  


Solution:
(a)(i)
5 2 = 4 2 + 7 2 2( 4 )( 7 )cosBAC 25=16+4956cosBAC 56cosBAC=40 cosBAC= 40 56  BAC= cos 1 40 56    = 44 o 25'


(a)(ii)
AD sinDCA = 7 sin 115 o AD sin 44 o 25' = 7 sin 115 o ( DCA=BAC )   AD= 7 sin 115 o ×sin 44 o 25'   AD=5.406 cm


(b)(i)




(b)(ii)
sinABC 7 = sin 44 o 25' 5 sinABC= sin 44 o 25' 5 ×7    = 78 o 28' ABC= 180 o 78 o 28' ABC= 101 o 32'( obtuse angle ) CBB'= 180 o 101 o 32'= 78 o 28' BCB'= 180 o 78 o 28' 78 o 28'= 23 o 4' Area of BB'C= 1 2 ×5×5× 23 o 4'  =4.898  cm 2

(Long Questions) – Question 5


Question 5:
The diagram below shows a triangle ABC.

(a) Calculate the length, in cm, of AC.
(b) A quadrilateral ABCD is now formed so that AC is a diagonal, ACD = 45° and AD = 14 cm. Calculate the two possible values of ADC.
(c) By using the acute ADC from (b), calculate
 (i) the length, in cm, of CD,
 (ii) the area, in cm2, of the quadrilateral ABCD


Solution:
(a)
Using cosine rule,
AC2 = AB2 + BC2 – 2 (AB)(BC) ABC
AC2 = 162 + 122 – 2 (16)(12) cos 70o
AC2 = 400 – 131.33
AC2 = 268.67
AC = 16.39 cm


(b)

Using sine rule, sin A D C 16.39 = sin 45 14 sin A D C = 16.39 × sin 45 14 sin A D C = 0.8278 A D C = 55.87  or  ( 180 55.87 ) A D C = 55.87  or 124 .13


(c)(i)
Acute angle of  A D C = 55.87 C A D = 180 45 55.87 = 79.13 C D sin 79.13 = 14 sin 45 C D = 14 × sin 79.13 sin 45 = 19.44  cm


(c)(ii)
Area of quadrilateral  A B C D = Area of  Δ   A B C + Area of  Δ   A C D = 1 2 ( 16 ) ( 12 ) sin 70 + 1 2 ( 16.39 ) ( 14 ) sin 79.13 = 90.21 + 112.67 = 202.88  cm 2

(Long Questions) – Question 4


Question 4:
Diagram below shows a quadrilateral PQRS.


(a) Find
(i) the length, in cm, of QS.
(ii) ∠QRS.
(iii) the area, in cm2, of the quadrilateral PQRS.
(b)(i) Sketch a triangle S’Q’R’ which has a different shape from triangle SQR such that S’R’ = SR, S’Q’ = SQ and ∠S’Q’R’ = ∠SQR.
(ii) Hence, state ∠S’R’Q’.

Solution:
(a)(i)
P=1807634=70 QS sin70 = 8 sin34 QS= 8×sin70 sin34  =13.44 cm

(a)(ii)
13.44 2 = 6 2 + 9 2 2( 6 )( 9 )cosQRS 108cosQRS= 6 2 + 9 2 13.44 2 cosQRS= 6 2 + 9 2 13.44 2 108  QRS= cos 1 ( 0.5892 )    = 126 o 6'

(a)(iii)
Area of PQRS =Area of PQS+Area of QRS =( 1 2 ×8×13.44×sin76 )+( 1 2 ×6×9×sin 126 o 6' ) =52.16+21.82 =73.98  cm 2


(b)(i)



(b)(ii)
S'R'Q'=S'RR'    =180 126 o 6'    = 53 o 54'

(Long Questions) – Question 3


Question 3:


The diagram shows a trapezium PQRS. PS is parallel to QR and QRS is obtuse. Find
(a) the length, in cm, of QS,
(b) the length, in cm, of RS,
(c) QRS,
(d) the area, in cm2, of triangle QRS.


Solution:
(a)
Q S sin P = P S sin Q Q S sin 85 = 13.1 sin 28 Q S = 13.1 × sin 85 sin 28 Q S = 27.8  cm

(b)
 RQS = 180o – 85o – 28o
 RQS = 67o
Using cosine rule,
RS2 = QR2 + QS2 – 2 (QR)(QS) RQS
RS2 = 6.42 + 27.82 – 2 (6.4)(27.8) cos 67o
RS2 = 813.8 – 139.04
RS2 = 674.76
RS = 25.98 cm

(c)
Using cosine rule, Q S 2 = Q R 2 + R S 2 2 ( Q R ) ( R S ) cos Q R S 27.8 2 = 6.4 2 + 25.98 2 2 ( 6.4 ) ( 25.98 ) cos Q R S 772.84 = 715.92 332.54 cos Q R S cos Q R S = 715.92 772.84 332.54 cos Q R S = 0.1712 Q R S = 99.86

(d)
Area of triangle QRS
= ½ (QR)(RS) sin R
= ½ (6.4) (25.98) sin 99.86o
= 81.91 cm2

(Long Questions) – Question 2


Question 2:
In the diagram below, ABC is a triangle. AGJB, AHC and BKC are straight lines. The straight line JK is perpendicular to BC.


It is given that BG= 40cm, GA = 33 cm, AH = 30 cm, GAH = 85o and JBK= 45o.
(a) Calculate the length, in cm of
  i.      GH
    ii.   HC
(b) The area of triangle GAH is twice the area of triangle JBK. Calculate the length, in cm, 
  of BK.
(c) Sketch triangle  which has a different shape from triangle ABC such that, A’B’ = AB
 A’C’ = AC and A’B’C’ = ABC.


Solution:
(a)(i)
Using cosine rule,
GH2 = AG2 + AH2 – 2 (AG)(AH) GAH
GH= 332+ 302 – 2 (33)(30) cos 85o
GH2 = 1089 + 900 – 172.57
GH2 = 1816.43
GH = 42.62 cm

(a)(ii)
A C D = 180 45 85 = 50 Using sine rule, A C sin 45 = 73 sin 50 A C = 73 × sin 45 sin 50 A C = 67.38  cm H C = 67.38 30 = 37.38  cm


(b)
Area of  Δ   G A H = 1 2 ( 33 ) ( 30 ) sin 85 = 493.12  cm 2 Let length of  B K = J K = x ×  Area of  Δ   J B K  = Area of  Δ   G A H 2 × [ 1 2 ( x ) ( x ) ] = 493.12 x 2 = 493.12 x = 22.21  cm B K = 22.21  cm


(c)

(Long Questions) – Question 1


Question 1:

The diagram shows a quadrilateral ABCD. The area of triangle BCD is 12 cm2 and BCD is acute. Calculate
(a) ∠BCD,
(b) the length, in cm, of BD,
(c) ABD,
(d) the area, in cm2, quadrilateral ABCD.


Solution:
(a) Given area of triangle BCD = 12 cm2
½ (BC)(CD) sin C = 12
½ (7) (4) sin C = 12
14 sin C = 12
sin C = 12/14 = 0.8571
C = 59o
BCD = 59o
 
(b)
Using cosine rule,
BD2 = BC2 + CD2 – 2 (7)(4) cos 59o
BD2 = 72+ 42 – 2 (7)(4) cos 59o
BD2 = 65 – 28.84
BD2 = 36.16
BD = 36.16
BD = 6.013 cm

(c)
Using sine rule,
A B sin 35 = 6.013 sin A 10 sin 35 = 6.013 sin A sin A = 6.013 × sin 35 10 sin A = 0.3449 A = 20.18 A B D = 180 35 20.18 A B D = 124.82

(d)

Area of quadrilateral ABCD
= Area of triangle ABD + Area of triangle BCD
= ½ (AB)(BD) sin B + 12 cm
= ½ (10) (6.013) sin 124.82 + 12
= 24.68 + 12
= 36.68 cm²

10.3 Area of Triangle


10.3 Area of Triangle

Example:
Calculate the area of the triangle above.

Solution:
A r e a = 1 2 a b sin C A r e a = 1 2 ( 7 ) ( 4 ) sin 40 o A r e a = 9  cm 2



Example:

Diagram above shows a triangle ABC, where AC = 8 cm and ∠C = 32o. Point D lies on straight line BC where BD = 10 cm and ∠ADB = 70o . Calculate
(a) the length, in cm, of CD,
(b) the area, in cm2 of ∆ ADC,
(c) the area, in cm2 of ∆ ABC,
(d) the length, in cm, of AB.

Solution:
(a)
ADC+ 70 o = 180 o ADC= 110 o CAD= 180 o 110 o 32 o CAD= 38 o Using Sine Rule, 8 sin 110 o = CD sin 38 o CDsin 110 o =8sin 38 o CD( 0.940 )=8( 0.616 ) CD=5.243

(b)
Area of ADC = 1 2 ( 8 )( 5.243 )sin 32 o =20.972( 0.530 ) =11.12  cm 2

(c)
Area of ABC = 1 2 ( 8 )( 10+5.243 )sin 32 o =60.972( 0.530 ) =32.315  cm 2

(d)
Use Cosine Rule for ABC, A B 2 = 15.243 2 + 8 2 2( 15.243 )( 8 )cos 32 o A B 2 =232.35+64206.83 A B 2 =89.52 AB=9.462 cm

10.2 The Cosine Rule


10.2 The Cosine Rule



The cosine rule can be used when
(i) two sides and the included angle, or
(ii) three sides of a triangle are given.


(A) If you know 2 sides and 1 angle between them [included angle] ⇒ Cosine rule

Example:


Calculate the length of AC, x, in cm for the triangle above.

Solution:
b 2 = a 2 + c 2 2 a c cos B x 2 = 4 2 + 7 2 2 ( 4 ) ( 7 ) cos 50 x 2 = 16 + 49 56 ( 0.6428 ) x 2 = 65 35.997 x 2 = 29.003 x = 5.385  cm


(B) If you know 3 sides ⇒ Cosine rule

Example:


Calculate ÐBAC for the triangle above.

Solution:
cos A = b 2 + c 2 a 2 2 b c cos B A C = 7 2 + 6 2 8 2 2 ( 7 ) ( 6 ) cos B A C = 0.25 B A C = cos 1 0.25 B A C = 75.52 o

10.1 The Sine Rule


10.1 The Sine Rule
In a triangle ABC in which the sides BC, CA and AB are denoted by a, b, and c as shown, and A, B, C are used to denote the angles at the vertices A, B, C respectively,



The sine rule can be used when
(i) two sides and one non-included angle or
(ii) two angles and one opposite side are given.


(A) If you know 2 angles and 1 side ⇒ Sine rule

Example:


Calculate the length, in cm, of AB.

Solution:
∠ACB = 180o – (50o + 70o) = 60o
A B sin 60 o = 4 sin 50 o A B = 4 × sin 60 o sin 50 o A B = 4.522  cm


(B) If you know 2 sides and 1 angle (but not between them) ⇒ Sine rule

Example:

Calculate ∠ACB.

Solution:
28 sin 54 o = 26 sin A C B sin A C B = 26 × sin 54 o 28 sin A C B = 0.7512 A C B = 48.7 o


(C) Case of ambiguity (2 possible triangles)

Example

Calculate ∠ACBθ.

Solution:
Two possible triangle with these measurement
AB = 26cm BC = 28 cm Ð BAC = 54o
26 sin θ = 28 sin 54 o sin θ = 0.7512 θ = sin 1 0.7512 θ = 48.7 o , 180 o 48.7 o θ = 48.7 o  (Acute angle) ,   131.3 o  (Obtuse angle)

Long Questions (Question 2 & 3)


Question 2:
Given the equation of a curve is:
y = x2 (x – 3) + 1
(a) Find the gradient of the curve at the point where x = –1.
(b) Find the coordinates of the turning points.

Solution:
(a)
y= x 2 ( x3 )+1 y= x 3 3 x 2 +1 dy dx =3 x 2 6x When x=1 dy dx =3 ( 1 ) 2 6( 1 )      =9 Gradient of the curve is 9.

(b)
At turning points, dy dx =0
3x2 – 6x = 0
x2 – 2x = 0
x (x – 2) = 0
x = 0, 2

y = x2 (x – 3) + 1
When x = 0, y = 1
When x = 2,
y = 22 (2 – 3) + 1
y = 4 (–1) + 1 = –3
Therefore, coordinates of the turning points are (0, 1) and (2, –3).


Question 3:
It is given the equation of the curve is y = 2x (1 – x)4 and the curve pass through T(2, 4).
Find
(a) the gradient of the curve at point T.
(b) the equation of the normal to the curve at point T.

Solution:
(a)
y=2x ( 1x ) 4 dy dx =2x×4 ( 1x ) 3 ( 1 )+ ( 1x ) 4 ×2     =8x ( 1x ) 3 +2 ( 1x ) 4 At T( 2,4 ),x=2. dy dx =16( 1 )+2( 1 )     =16+2     =18

(b)
Equation of normal: y y 1 = 1 dy dx ( x x 1 ) y4= 1 18 ( x2 ) 18y72=x+2 x+18y=74