3.9.4 Quadratic Functions, SPM Practice (Long Question)


Question 6:
Quadratic function f(x) = x2 – 4px + 5p2 + 1 has a minimum value of m2 + 2p, where m and p are constants.
(a) By using the method of completing the square, shows that m = p – 1.
(b) Hence, find the values of p and of m if the graph of the quadratic function is symmetry at x = m2 – 1.

Solution:
(a)
f(x)=x24px+5p2+1=x24px+(4p2)2(4p2)2+5p2+1=(x2p)2+p2+1Minimum value,m2+2p=p2+1m2=p22p+1m2=(p1)2m=p1

(b)
x=m212p=m21p=m212Given m=p1p=m+1m+1=m2122m+2=m21m22m3=0(m3)(m+1)=0m=3 or 1When m=3,p=3212=4When m=1,p=(1)212=0