Long Questions (Question 5)


Question 5:
Diagram below shows a quadrilateral ABCD. Point C lies on the y-axis.

The equation of a straight line AD is 2y = 5x – 21
(a) Find
(i) the equation of the straight line AB,
(ii) the coordinates of A,
(b) A point P moves such that its distance from point D is always 5 units.
Find the equation of the locus of P.

Solution:
(a)(i)
2y=5x21y=52x212mAD=52mAB×mAD=1mAB×52=1mAB=25Equation of AByy1=mAB(xx1)y+1=25(x+2)5y+5=2x45y=2x9

(a)(ii)
2y=5x21 .......... (1)5y=2x9 .......... (2)(1)×5:10y=25x105 .......... (3)(2)×2:10y=4x18 .......... (4)(2)(4):0=29x87x=3From (1),2y=15212y=6y=3A=(3 , 3)

(b)
y=2,4=5x215x=25x=5Point D=(5, 2)PD=5(x5)2+(y2)2=5(x5)2+(y2)2=25x210x+25+(y24y+4)=25x2+y210x4y+4=0