Long Question 3


Question 3:
(a) Prove that 2tanx2sec2x=tan2x.  

(b)(i) Sketch the graph of y = – tan 2x for 0  x ≤ π
 .

(b)(ii) Hence, by drawing a suitable straight line on the same axes, find the number of solutions satisfying the equation 3xπ+2tanx2sec2x=0  for 0  x π
 .
State the number of solutions.

Solution:
(a)
2tanx2sec2x=tan2xLHS:2tanx2sec2x=2tanx2(1+tan2x)=2tanx2tan2x=tan2x(RHS)


(b)(i) 


(b)(ii)
3xπ+2tanx2sec2x=03xπ+tan2x=0from part (a)tan2x=3xπ y=3xπThe suitable straight line to sketch is y=3xπ.

When x = 0, y = 0.
When x = π, = 3.
  Number of solutions = 3