Long Question 5


Question 5 (10 marks):
(a) Prove sin(3x+π6)sin(3xπ6)=cos3x(b) Hence,(i) solve the equation sin(3x2+π6)sin(3x2π6)=12 for 0x2π and give your answer in the simplest fraction form in terms of π radian.(ii) sketch the graph of y=sin(3x+π6)sin(3xπ6)12 for 0xπ.

Solution:
(a) Left hand side,sin(3x+π6)sin(3xπ6)=[sin3xcosπ6+cos3xsinπ6][sin3xcosπ6cos3xsinπ6]=2[cos3xsinπ6]=2[cos3x(12)]=cos3x(right hand side)

(b)(i)sin(3x2+π6)sin(3x2π6)=12,0x2πcos3x2=123x2=π3,(2ππ3),(2π+π3)3x2=π3,5π3,7π3x=2π9,10π9,14π9


(b)(ii) y=sin(3x+π6)sin(3xπ6)12 for 0xπ.y=cos3x12