Long Question 9


Question 9 (10 marks):
Diagram shows the straight line 4y = x – 2 touches the curve x = y2 + 6 at point P.



Find
(a) the coordinates of P,
(b) the area of the shaded region,
(c) the volume of revolution, in terms of π, when the region bounded by the curve and the straight line x = 8 is revolved through 180o about the x-axis.


Solution:
(a)
4y=x2.........(1) x= y 2 +6.........(2) Substitute (2) into (1): 4y=( y 2 +6 )2 y 2 4y+4=0 ( y2 )( y2 )=0 y2=0 y=2 Substitute y=2 into (2): x= ( 2 ) 2 +6 x=10 Thus, P=( 10, 2 ).


(b)
At x-axis, y=0 4y=x2 0=x2 x=2 Area of shaded region = Area of triangleArea under the curve = 1 2 ( 102 )( 2 ) 6 10 ydx =8 6 10 x6 dx x= y 2 +6 y= x6 =8 6 10 ( x6 ) 1 2 dx =8 [ ( x6 ) 1 2 +1 1 2 +1 ] 6 10 =8 [ 2 ( x6 ) 3 2 3 ] 6 10 =8[ 2 ( 106 ) 3 2 3 2 ( 66 ) 3 2 3 ] =8 16 3 = 8 3  units 2


(c)
Volume of revolution =π 6 8 y 2 dx =π 6 8 ( x6 )dx x= y 2 +6 y 2 =x6 =π [ x 2 2 6x ] 6 8 =π[ ( 3248 )( 1836 ) ] =2π  units 3



SPM Practice 3 (Linear Law) – Question 3

Question 3
The table below shows the corresponding values of two variables, x and y, that are related by the equation y = 5 h x 2 + k h x , where h and k are constants.


(a) Using a scale of 2 cm to 1 unit on the x - axis and 2 cm to 0.2 units on the y x – axis, plot the graph of y x against x .  Hence, draw the line of best fit.

(b) Use your graph in (a) to find the values of
(i) h,
(ii) k,
(iii) y when x = 6.

Solution
Step 1 : Construct a table consisting X and Y.


Step 2 : Plot a graph of Y against X, using the scale given and draw a line of best fit

Steps to draw line of best fit - Click here
Step 3 : Calculate the gradient, m, and the Y-intercept, c, from the graph
Step 4 : Rewrite the original equation given and reduce it to linear form

Step 5
 :
Compare with the values of m and c obtained, find the values of the unknown required


(b) (iii)
find the value of y when x = 6.

SPM Practice 3 (Linear Law) – Question 2


Question 2 (10 marks):
Use a graph to answer this question.
Table 1 shows the values of two variables, x and y, obtained from an experiment.
The variables x and y are related by the equation y h = hk x , where h and k are constants.


(a) Plot xy against x, using a scale of 2 cm to 1 unit on the x-axis and 2 cm to 5 units on the xy-axis.
Hence, draw the line of best fit.

(b) Using the graph in 2(a), find
(i) the value of h and of k,
(ii) the correct value of y if one of the values of y has been wrongly recorded during the experiment.


Solution: 
(a)





(b)
y h = hk x xy h x=hk xy= h x+hk Y=mX+C Y=xy, m= h , C=hk


(b)(i)
m= 36.5 5.1 h = 36.5 5.1 h =7.157 h=51.22 C=4 hk=4 k= 4 h k= 4 51.22 k=0.0781


(b)(ii)
xy=21 3.5y=21 y= 21 3.5 =6.0 Correct value of y is 6.0.


Long Question 10


Question 10 (10 marks):
Diagram shows a triangle ABC. The straight line AE intersects with the straight line BC at point D. Point V lies on the straight line AE.

It is given that  BD = 1 3 BC , AC =6 x ˜  and  AB =9 y ˜ . ( a ) Express in terms of  x ˜  and / or  y ˜ :    ( i )  BC ,    ( ii )  AD . ( b ) It is given that  AV =m AD  and  BV =n( x ˜ 9 y ˜ ), where m and n are constants.   Find the value of m and of n. ( c ) Given  AE =h x ˜ +9 y ˜ , where h is a constant, find the value of h.

Solution: 
(a)(i)
BC = BA + AC  =9 y ˜ +6 x ˜  =6 x ˜ 9 y ˜

(a)(ii)
AD = AB + BD  =9 y ˜ + 1 3 BC  =9 y ˜ + 1 3 ( 6 x ˜ 9 y ˜ )  =9 y ˜ +2 x ˜ 3 y ˜  =2 x ˜ +6 y ˜


(b)
Given  AV =m AD =m( 2 x ˜ +6 y ˜ ) =2m x ˜ +6m y ˜ AV = AB + BV    = 9 y ˜ +n( x ˜ 9 y ˜ )   =9 y ˜ +n x ˜ 9n y ˜   =n x ˜ +( 99n ) y ˜ By equating the coefficients of  x ˜  and  y ˜ 2m x ˜ +6m y ˜ =n x ˜ +( 99n ) y ˜ 2m=n n=2m.............( 1 ) 6m=99n.............( 2 ) Substitute (1) into (2), 6m=99( 2m ) 6m=918m 24m=9 m= 9 24 = 3 8 From ( 1 ): n=2( 3 8 )= 3 4


(c)
A, D and E are collinear. AD =k( AE ) AD =k( h x ˜ +9 y ˜ ) 2 x ˜ +6 y ˜ =kh x ˜ +9k y ˜ Equating the coefficients of  y ˜ : 9k=6 k= 6 9 k= 2 3 Equating the coefficients of  x ˜ : kh=2 ( 2 3 )h=2 h=2× 3 2 h=3



Long Question 9


Question 9 (10 marks):
Diagram 5 shows triangles OAQ and OPB where point P lies on OA and point Q lies on OB. The straight lines AQ and PB intersect at point R.
It is given that  OA =18 x ˜ ,  OB =16 y ˜ , OP:PA=1:2, OQ:QB=3:1, PR =m PB  and  QR =n QA , where m and n are constants. ( a ) Express  OR  in terms of    ( i ) m,  x ˜  and  y ˜ ,    ( ii ) n,  x ˜  and  y ˜ , ( b ) Hence, find the value of m and of n. ( c ) Given | x ˜ |=2 units, | y ˜ |=1 unit and OA is perpendicular to OB calculate | PR |.

Solution
(a)(i)
OR = OP + PR  = 1 3 OA +m PB  = 1 3 ( 18 x ˜ )+m( PO + OB )  =6 x ˜ +m( 6 x ˜ +16 y ˜ )

(a)(ii)
OR = OQ + QR  = 3 4 OB +n QA  = 3 4 ( 16 y ˜ )+n( QO + OA )  =12 y ˜ +n( 12 y ˜ +18 x ˜ )  =( 1212n ) y ˜ +18n x ˜


(b)
6 x ˜ +m( 6 x ˜ +16 y ˜ )=( 1212n ) y ˜ +18n x ˜ 6 x ˜ 6m x ˜ +16m y ˜ =18n x ˜ +12 y ˜ 12n y ˜ by comparison; 66m=18n 1m=3n m=13n..............( 1 ) 16m=1212n 4m=33n..............( 2 ) Substitute (1) into (2), 4( 13n )=33n 412n=33n 9n=1 n= 1 9 Substitute n= 1 9  into (1), m=13( 1 9 ) m= 2 3

[adinserter block="3"]

(c)
| x ˜ |=2| y ˜ |=1  PR = 2 3 PB  = 2 3 ( 6 x ˜ +16 y ˜ )  =4 x ˜ + 32 3 y ˜ | PR |= [ 4( 2 ) ] 2 + [ 32 3 ( 1 ) ] 2   = 1600 9   = 40 3  units


Long Question (Question 10)


Question 10 (5 marks):
Solve the following simultaneous equations:
x – 3y = 1,
x2 + 3xy + 9y2 = 7


Solution:
x3y=1...................( 1 ) x 2 +3xy+9 y 2 =7...................( 2 ) From ( 1 ):x=3y+1...................( 3 ) Substitute ( 3 ) into ( 2 ): ( 3y+1 ) 2 +3( 3y+1 )y+9 y 2 =7 9 y 2 +6y+1+9 y 2 +3y+9 y 2 7=0 27 y 2 +9y6=0 9 y 2 +3y2=0 ( 3y1 )( 3y+2 )=0 y= 1 3  or  2 3 Substitute y into ( 3 ): When y= 1 3 x=3( 1 3 )+1=2 When y= 2 3 x=3( 2 3 )+1=1 Hence, the solutions are x=2,y= 1 3  or x=1,y= 2 3 .


Long Question (Question 9)


Question 9 (7 marks):
Diagram shows the plan of a rectangular garden ABCD. The garden consists of a semicircular pond ATD and grassy area ABCDT.
It is given that DC = 6y metre and BC = 7x metre, xy. The area of the rectangular garden ABCD is 168 metre2 and the perimeter of the grassy area is 60 metre. The pond with uniform depth contains 15.4 metre3 of water.
By using  π= 22 7 , find the depth, in metre, of water in the pond.

Solution:
Area of ABCD=168 ( 6y )( 7x )=168 42xy=168 xy=4...................( 1 ) Perimeter of grassy area=60 6y+6y+7x+( 1 2 × 2 × 22 11 7 × 7 x 2 )=60 12y+18x=60 2y+3x=10...................( 2 ) From ( 1 ):xy=4 x= 4 y ...................( 3 ) Substitute (3) into (2): 2y+3( 4 y )=10 2 y 2 +12=10y y 2 5y+6=0 ( y2 )( y3 )=0 y2=0    y=2     or     y3=0 y=3 Substitute the values of y into (3): When y=2 x= 4 2 =2 ( ignored, xy ) When y=3 x= 4 3 Given volume of water=15.4 1 2 ( 22 7 ) ( 7x 2 ) 2 d=15.4 1 2 ( 22 7 ) [ 7( 4 3 ) 2 ] 2 d=15.4 11 7 ( 14 3 ) 2 d=15.4 308 9 d=15.4 d=0.45 m Thus, the depth of water in the pond is 0.45 m.


Long Questions (Question 5)


Question 5 (7 marks):
It is given that the equation of a curve is y= 5 x 2 .  
(a) Find the value of dy dx when x = 3.
(b) Hence, estimate the value of 5 ( 2.98 ) 2 .  

Solution:
(a)
y= 5 x 2 =5 x 2 dy dx =10 x 3 = 10 x 3 When x=3 dy dx = 10 3 3 = 10 27


(b)
δx=2.983=0.02 δy= dy dx .δx = 10 27 ×( 0.02 ) =0.007407 Values of  5 ( 2.98 ) 2 =y+δy = 5 x 2 +( 0.007407 ) = 5 3 2 +( 0.007407 ) =0.56296


Long Questions (Question 4)


Question 4 (6 marks):
Diagram shows the front view of a part of a roller coaster track in a miniature park.

The curve part of the track of the roller coaster is represented by an equation y= 1 64 x 3 3 16 x 2 , with point A as the region.
Find the shortest vertical distance, in m, from the track to ground level.

Solution:
y= 1 64 x 3 3 16 x 2  ............... ( 1 ) dy dx =3( 1 64 ) x 2 2( 3 16 ) x 1 = 3 64 x 2 3 8 x At turning point,  dy dx =0 3 64 x 2 3 8 x=0 x( 3 64 x 3 8 )=0 x=0  or 3 64 x 3 8 =0 3 64 x= 3 8 x= 3 8 × 64 3 x=8 Substitute values of x into equation (1): When x=0, y= 1 64 ( 0 ) 3 3 16 ( 0 ) 2 y=0 When x=8, y= 1 64 ( 8 ) 3 3 16 ( 8 ) 2 y=4 Thus, turning points : ( 0, 0 ) and ( 8,4 )

dy dx = 3 64 x 2 3 8 x d 2 y d x 2 =2( 3 64 )x 3 8   = 3 32 x 3 8 When x=0, d 2 y d x 2 = 3 32 ( 0 ) 3 8   = 3 8 ( <0 ) ( 0, 0 ) is maximum point. When x=8, d 2 y d x 2 = 3 32 ( 8 ) 3 8   = 3 8 ( >0 ) ( 8,4 ) is minimum point. Shortest vertical distance between track  and ground level is at the minimum point. Shortest vertical distance =54 =1 m


Long Questions (Question 10)


Question 10 (8 marks):
Diagram shows a circle and a sector of a circle with a common centre O. The radius of the circle is r cm.


It is given that the length of arc PQ and arc RS are 2 cm and 7 cm respectively. QR = 10 cm.
[Use θ = 3.142]
Find
(a) the value of r and of θ,
(b) the area, in cm2, of the shaded region.


Solution
:

(a)
Length of arc PQ=2 cm rθ=2 ................. ( 1 ) Length of arc RS=7 cm ( r+10 )θ=7 rθ+10θ=7 ................. ( 2 ) Substitute ( 1 ) into ( 2 ): 2+10θ=7 10θ=5 θ= 5 10 θ=0.5 rad From( 1 ): When θ=0.5 rad, r×0.5=2 r=4

(b)
OS=OR=4+10=14 cm Area of shaded region =area of ΔORS  area of sector OPQ =( 1 2 × 14 2 ×sin0.5 rad )( 1 2 × 4 2 ×0.5 ) =42.981  cm 2