Quadratic Functions, SPM Practice (Short Questions)

Question 1:

Find the minimum value of the function (x) = 2x2 + 6x + 5. State the value of xthat makes f (x) a minimum value.

Solution:

By completing the square for f (x) in the form of f (x) = a(x + p)2 + q to find the minimum value of f (x).

f ( x ) = 2 x 2 + 6 x + 5 = 2 [ x 2 + 3 x + 5 2 ] = 2 [ x 2 + 3 x + ( 3 × 1 2 ) 2 ( 3 × 1 2 ) 2 + 5 2 ]
= 2 [ ( x + 3 2 ) 2 9 4 + 5 2 ] = 2 [ ( x + 3 2 ) 2 + 1 4 ] = 2 ( x + 3 2 ) 2 + 1 2

Since a = 2 > 0,
Therefore f (x) has a minimum value when x = 3 2 . . The minimum value of f (x) = ½. 

Question 2:

The quadratic function (x) = –x2 + 4x + k2, where k is a constant, has a maximum value of 8.
Find the possible values of k.

Solution:
(x) = –x2 + 4x + k2
(x) = –(x2 – 4x) + k2 ← [completing the square for f (x) in
the form of f (x) = a(x + p)2q]
(x) = –[x2 – 4x + (–2)2 – (–2)2] + k2
(x) = –[(x – 2)2 – 4] + k2
(x) = –(x – 2)2 + 4 + k2

Given the maximum value is 8.
Therefore, 4 + k2 = 8
k2 = 4
k = ±2