Simultaneous Equations (Example 1 & 2)


Example 1:
Solve the simultaneous equations.
x+14y=1 and y28=4x.

Solution:
x+14y=1(1)y28=4x(2)x=114y(3)

Substitute (3) into (2),
y28=4(114y)y28=444y
y2 + y – 12 = 0
(y + 4)(y – 3) = 0
y = –4 or y = 3 

Substitute the values of y into (3),
when y=4, x=114(4)=2when y=3, x=114(3)=14The solutions are x=2, y=4 and x=14, y=3


Example 2:
Solve the simultaneous equations 2x + y = 1 and 2x2+ y2 + xy = 5.
Correct your answer to three decimal places.

Solution:
2x + y = 1-----(1)
2x2 + y2+ xy = 5-----(2)

From (1),
y = 1 – 2x-----(3)

Substitute (3) into (2).
2x2 + (1 – 2x)2 + x(1 – 2x) = 5
2x2 + (1 – 2x)(1 – 2x) + x – 2x2 = 5
1 – 2x – 2+ 4x2 + x – 5 = 0
4x2 – 3x – 4 = 0

From x=b±b24ac2aa=4, b=3c=4x=(3)±(3)24(4)(4)2(4)x=3±738x=0.693 or 1.443

Substitute the values of x into (3).
When x = –0.693,
y = 1 – 2 (–0.693) = 2.386 (correct to 3 decimal places)

When x = 1.443,
y = 1 – 2 (1.443) = –1.886 (correct to 3 decimal places)

The solutions are x = –0.693, y  = 2.386 and x = 1.443, y = –1.886.