Long Questions (Question 1)


Question 1:
Diagram shows a circle, centre O and radius 8 cm inscribed in a sector SPT of a circle at centre P.  The straight lines, SP and TP, are tangents to the circle at point Q and point R, respectively.

[Use p= 3.142]
Calculate
(a) the length, in cm, of the arc ST,
(b) the area, in cm2, of the shaded region.


Solution:
(a)
For triangle OPQsin30=8OPOP=8sin30=16 cmRadius of sector SPT=16+8=24 cmSPT=60×3.142180=1.047 radianLength of arc ST=24×1.047=25.14 cm


(b)
For triangle OPQ:tan30=8QPPQ=8tan30=13.86 cmQOR=2(60)=120Reflex angle QOR=360120=240240=3.142180×240=4.189 radianArea of shaded region=(  Area of sector SPT)(Area of major   sector OQR)(Area of triangle OPQ and OPR)=12(24)2(1.047)12(8)2(4.189)2(12×8×13.86)=301.54134.05110.88=56.61 cm2