5.5.1 Proving Trigonometric Identities Using Addition Formula And Double Angle Formulae (Part 1)


Example 2:
Prove each of the following trigonometric identities.
(a)1+cos2xsin2x=cotx(b)cotAsec2A=cotA+tan2A(c)sinx1cosx=cotx2

Solution:
(a)
LHS=1+cos2xsin2x=1+(2cos2x1)2sinxcosx=2cos2x2sinxcosx=cosxsinx=cotx=RHS(proven)


(b)
RHS=cotA+tan2A=cosAsinA+sin2Acos2A=cosAcos2A+sinAsin2AsinAcos2A=cosA(cos2Asin2A)+sinA(2sinAcosA)sinAcos2A=cos3AcosAsin2A+2sin2AcosAsinAcos2A=cos3A+cosAsin2AsinAcos2A=cosA(cos2A+sin2A)sinAcos2A=cosAsinAcos2Asin2A+cos2A=1=(cosAsinA)(1cos2A)=cotAsec2A


(c)
LHS=sinx1cosx=2sinx2cosx21(12sin2x2)sinx=2sinx2cosx2,cosx=12sin2x2=2sinx2cosx22sin2x2=cosx2sinx2=cotx2=RHS(proven)