(F) Sum of the First n Terms of an Arithmetic Progression 

1.2.3 Sum of the First nTerms of an Arithmetic Progression 

(F) Sum of the First n terms of an Arithmetic Progressions
Sn=n2[2a+(n1)d]Sn=n2(a+l)
a = first term
d = common difference
n = the number of term
Sn = the sum of first n terms


Example:
Calculate the sum of each of the following arithmetic progressions.
(a) -11, -8, -5, ... up to the first 15 terms.
(b) 8,   10½,   13,...   up to the first 13 terms.
(c) 5, 7, 9,....., 75 [Smart TIPS: The last term is given, you can find the number of term, n]
 
Solution:
(a)
11,8,5,.....FindS15a=11,d=8(11)=3S15=152[2a+14d]S15=152[2(11)+14(3)]=150

(b)
8,1012,13,.....FindS13a=8d=10128=52S13=132[2a+12d]S13=132[2(8)+12(52)]=299

(c)
5,7,9,.....,75(The last terml=75)a=5d=75=2Sn=n2(a+l)S36=362(5+75)=1440The last terml=75Tn=75a+(n1)d=755+(n1)(2)=75(n1)(2)=70n1=35n=36