3.4c Integration as the Inverse of Differentiation
Example:
Shows that ddx[2x+5x2−3]=−2(x2+5x+3)(x2−3)2Hence, find the value of ∫20(x2+5x+3)(x2−3)2 dx
Solution:
ddx[2x+5x2−3]=(x2−3)(2)−(2x+5)(2x)(x2−3)2 =2x2−6−4x2−10x(x2−3)2 =−2x2−10x−6(x2−3)2 =−2(x2+5x+3)(x2−3)2∫20−2(x2+5x+3)(x2−3)2 dx=[2x+5x2−3]20−2∫20(x2+5x+3)(x2−3)2 dx=[2x+5x2−3]20 ∫20(x2+5x+3)(x2−3)2 dx=−12[(2(2)+522−3)−(2(0)+502−3)] =−12[9−(−53)] =−12×323 =−163 =−513
Example:
Shows that ddx[2x+5x2−3]=−2(x2+5x+3)(x2−3)2Hence, find the value of ∫20(x2+5x+3)(x2−3)2 dx
Solution:
ddx[2x+5x2−3]=(x2−3)(2)−(2x+5)(2x)(x2−3)2 =2x2−6−4x2−10x(x2−3)2 =−2x2−10x−6(x2−3)2 =−2(x2+5x+3)(x2−3)2∫20−2(x2+5x+3)(x2−3)2 dx=[2x+5x2−3]20−2∫20(x2+5x+3)(x2−3)2 dx=[2x+5x2−3]20 ∫20(x2+5x+3)(x2−3)2 dx=−12[(2(2)+522−3)−(2(0)+502−3)] =−12[9−(−53)] =−12×323 =−163 =−513