Long Question 6


Question 6:
Diagram below shows part of the curve   y=2(3x2)2  which passes through (1, 2).


(a) Find the equation of the tangent to the curve at the point B.
(b) A region is bounded by the curve, the x-axis and the straight lines x = 2 and x = 3.
(i) Find the area of the region.
(ii) The region is revolved through 360° about the x–axis. Find the volume generated, in terms of p.

Solution:
(a)
y=2(3x2)2=2(3x2)2dydx=4(3x2)3(3)dydx=12(3x2)3dydx=12(3(1)2)3,x=1dydx=12y2=12(x1)y2=12x+12y=12x+14


(b)(i)

Area =32ydx=322(3x2)2dx=322(3x2)2dx=[2(3x2)11(3)]32=[23(3x2)]32=[23[3(3)2]][23[3(2)2]]=221+16=114unit2


(b)(ii)
Volume generated=πy2dx=π324(3x2)4dx=π324(3x2)4dx=π[4(3x2)33(3)]32=π[49(3x2)3]32=π[49[3(3)2]3][49[3(2)2]3]=π(43087+4576)=315488πunit3