Question 5:
Given ∫(6x2+1)dx=mx3+x+c, where m and c are constants, find(a) the value of m.(b) the value of c if ∫(6x2+1)dx=13 when x=1.
Solution:
(a)
∫(6x2+1)dx=mx3+x+c6x33+x+c=mx3+x+c2x3+x+c=mx3+x+cCompare the both sides,∴
(b)
Given ∫(6x2+1)dx=mx3+x+c, where m and c are constants, find(a) the value of m.(b) the value of c if ∫(6x2+1)dx=13 when x=1.
Solution:
(a)
∫(6x2+1)dx=mx3+x+c6x33+x+c=mx3+x+c2x3+x+c=mx3+x+cCompare the both sides,∴
(b)
Question 6:
Solution:
Solution:
Question 7:
Solution:
Solution: