Short Question 7 & 8


Question 7:
It is given that   sinA=513andcosB=45 , where A is an obtuse angle and B is an acute angle.
Find
(a) tan A
(b) sin (A + B)
(c) cos (A B
 
Solution:
(a)
tanA=512


(b)
sin(A+B)=sinAcosB+cosAsinBsin(A+B)=(513)(45)+(1213)(35)cosA=1213sinB=35sin(A+B)=4133665sin(A+B)=1665


(c)
cos(AB)=cosAcosB+sinAsinBcos(AB)=(1213)(45)+(513)(35)cos(AB)=3365



Question 8:
If sin A = p, and 90° < A < 180°, express in terms of p
(a) tan A
(b) cos A
(c) sin 2A

Solution:
Using Pythagoras Theorem,Adjacent side=12p2=1p2


(a)

tanA=p1p2tan is negative atsecond quadrant


(b)
cosA=1p2cosis negative atsecond quadrant


(c)
sinA=2sinAcosAsinA=2(p)(1p2)sinA=2p1p2