Short Question 9 & 10


Question 9:
Given that sin θ = 35 , where θ is an acute angle, without using tables or a calculator, find the values of
(a) sin (180º + θ),
(b) cos (180º – θ),
(c) tan (360º + θ).

Solution:
(a)


sinθ=35cosθ=45tanθ=34

sin (180º + θ)
= sin 180º cos θ + cos 180º sin θ
= (0) cos θ + (– 1) sin θ
= – sin θ
= 35

(b)
cos (180º – θ)
= cos 180º cos θ + sin 180º sin θ
= (– 1) cos θ + (0) sin θ
= – cos θ
45

(c)
tan(360+θ)=tan360+tanθ1tan360tanθ=0+tanθ1(0)(tanθ)=tanθ=34



Question 10:
Prove each of the following trigonometric identities.
(a) cot2 x – cot2 x cos2x = cos2 x
(b)secxsecxcosx=cosec2x

Solution:
(a)
LHS:cot2xcot2xcos2x=cot2x(1cos2x)=cot2x(sin2x)=cos2xsin2x(sin2x)=cos2x(RHS)


(b)
LHS:secxsecxcosx=1cosx1cosxcosx=1cosx1cosxcos2xcosx=1cosx1cos2xcosx=1cosx×cosx1cos2x=11cos2x=1sin2x=cosec2x(RHS)