Reduce Non-Linear Function To Linear Function – Examples (G) To (L)

Examples:
Reduce each of the following equations to the linear form. Hence, state the gradient and the Y-intercept of the linear equations in terms of  a and b.
(g)  k x 2 + t y 2 = x  
(h)  y = x p + q x  
(i)  h y = x + k x  
(j)  y = a b x  
(k)  y = a x b  
(l)  y = a b x + 1

[Note :
X and Y cannot have constant, but can have the variables (for example x and y)
 m and c can only have the constant (for example a and b), cannot have the variables x and y]

Solution:












SPM Practice 3 (Linear Law) – Question 3

Question 3
The table below shows the values of two variables, x and y, obtained from an experiment. The variables x and y are related by the equation a y = b x + 1 , where k and p are constants.


(a) Based on the table above, construct a table for the values of 1 x and 1 y . Plot 1 y against 1 x , using a scale of  2 cm to 0.1 unit on the 1 x - axis and  2 cm to 0.2 unit on the 1 y - axis. Hence, draw the line of best fit.
(b) Use the graph from  (b)  to find the value of
(i)  a,
(ii)  b.


Solution

Step 1 : Construct a table consisting X and Y.




Step 2 : Plot a graph of Y against X, using the scale given and draw a line of best fit

Steps to draw line of best fit - Click here




Step 3 : Calculate the gradient, m, and the Y-intercept, c, from the graph




Step 4 : Rewrite the original equation given and reduce it to linear form

Step 5 : Compare with the values of m and c obtained, find the values of the unknown required

Steps To Draw The Line Of Best Fit

Steps to draw a line of Best Fit
(i) Select suitable scales for the x-axis and the y-axis, make sure the points plotted accurately and the graph produced is large enough on the graph paper,
(ii) Mark the points correctly,
(iii) Use a long and transparent ruler to draw the line of best fit.

Step 1 : Select the suitable scale on x and y axis 

(the graph produced must be more than 50% of the graph paper)
 

 
Step 2 : Mark the points correctly
 

 
Step 3 : Draw the Line of Best Fit
 
* Note
 -the line passes through four points 
-one point is above the line
-one point is below the line


 

SPM Practice 2 (Question 1 – 3)

Question 1:
Reduce non-linear relation,  y=p x n1 , where k and n are constants, to linear equation.  State the gradient and vertical intercept for the linear equation obtained.
[Note : Reduce No-linear function to linear function]

Solution:


 

Question 2:
The diagram shows a line of best fit by plotting a graph of  y 2 against  x .

  1. Find the equation of the line of best fit.
  2. Determine the value of
    1. x when y = 4,
    2. y when x = 25.
Solution:



 

Question 3:
The diagram shows part of the straight line graph obtained by plotting y against x 2 .

Express y in terms of x.

Solution:



 

SPM Practice 3 (Linear Law) – Question 1


Question 1 (10 marks):
Use a graph to answer this question.
Table 1 shows the values of two variables, x and y, obtained from an experiment.
The variables x and y are related by the equation y h = hk x , where h and k are constants.


(a) Plot xy against x, using a scale of 2 cm to 1 unit on the x-axis and 2 cm to 5 units on the xy-axis.
Hence, draw the line of best fit.

(b) Using the graph in 9(a), find
(i) the value of h and of k,
(ii) the correct value of y if one of the values of y has been wrongly recorded during the experiment.

Solution: 
(a)




(b)
y h = hk x xy h x=hk xy= h x+hk Y=mX+C Y=xy, m= h , C=hk


(b)(i)
m= 36.5 5.1 h = 36.5 5.1 h =7.157 h=51.22 C=4 hk=4 k= 4 h k= 4 51.22 k=0.0781


(b)(ii)
xy=21 3.5y=21 y= 21 3.5 =6.0 Correct value of y is 6.0.


Tips To Reduce Non-Linear Function To Linear Function

Tips:
(1)  The equation must have one constant (without x and y).
(2)  X and Y cannot have constant, but can have the variables (for example x and y).
(3)  m and c can only have the constant (for example a and b), cannot have the variables x and y.


Examples
(1)
X and Y cannot have constant, but can have the variables (for example x and y)



(2)
 m and c can only have the constant (for example a and b), cannot have the variables x and y





SPM Practice 2 (Linear Law) – Question 4

Question 4
The table below shows the corresponding values of two variables, x and y, that are related by the equation y = q x + p q x , where p and q are constants.


One of the values of y is incorrectly recorded.
(a) Using scale of 2 cm to 5 units on the both axis, plot the graph of xy against x 2  .  Hence, draw the line of best fit

(b) Use your graph in (a) to answer the following questions:
(i) State the values of y which is incorrectly recorded and determine its actual value.
(ii) Find the value of p and of q.

Solution
Step 1 : Construct a table consisting X and Y.


Step 2 : Plot a graph of Y against X, using the scale given and draw a line of best fit


Steps to draw line of best fit - Click here

(b) (i) State the values of y which is incorrectly recorded and determine its actual value.


Step 3 : Calculate the gradient, m, and the Y-intercept, c, from the graph

Step 4 : Rewrite the original equation given and reduce it to linear form

Step 5 : Compare with the values of m and c obtained, find the values of the unknown required

SPM Practice 3 (Linear Law) – Question 2


Question 2 (10 marks):
Use a graph to answer this question.
Table shows the values of two variables, x and y, obtained from an experiment. A straight line will be obtained when a graph of y 2 x  against  1 x is plotted.


(a) Based on Table, construct a table for the values of 1 x  and  y 2 x .  
( b ) Plot  y 2 x  against  1 x , using a scale of 2 cm to 0.1 unit on the  1 x -axis   and 2cm to 2 units on the  y 2 x -axis.   Hence, draw the line of best fit.

(c) Using the graph in 11(b)
(i) find the value of y when x = 2.7,
(ii) express y in terms of x.

Solution:
(a)


(b)



(c)(i)
When x=2.7,  1 x =0.37 From graph, y 2 x =5.2 y 2 2.7 =5.2 y=3.75


(c)(ii)

Form graph, y-intercept, c = –4 gradient, m= 16( 4 ) 0.80 =25 Y=mX+c y 2 x =25( 1 x )4 y= 254x