Finding a new function given a composite function (Case B : Second function is given) Example 1 Posted on April 18, 2020 by user Example 1 (substitution Method)A function f is defined by f : x ↦ x + 2 . Find the function g if g f : x ↦ x 2 + 3 x + 5 . [Note : Second function is given, use substitution y = x + 2]
Finding a new function given a composite function (Case A : First function is given) Example 3 Posted on April 18, 2020 by user Example 3A function f is defined by f : x ↦ 2 x + 1 . Find the function g if f g : x ↦ 5 x − 2 x + 5 , x ≠ − 5 . [Note : First function is given] Click here (check for example 5)
Finding a new function given a composite function (Case A : First function is given) Example 2 Posted on April 18, 2020 by user Example 2A function f is defined by f : x ↦ 2 x . Find the function g if f g : x ↦ x 2 + 1 . [Note : the first function f is given] Click here (check for example 5)
Finding a new function given a composite function (Case A : First function is given) Example 1 Posted on April 18, 2020 by user Example 1A function f is defined by f : x ↦ 2 x + 5 . Find the function g if f g : x ↦ 3 x − 8 . [Note : First function f is given] Click here (check for example 5) to learn more about function
Composite Function (Comparison Method) Example 2 Posted on April 18, 2020 by user Example 2Given f : x ↦ 1 − x and g : x ↦ p x 2 + q . If the composite function gf is defined by g f : x ↦ 3 x 2 − 6 x + 5 , find (a) the value of p and of q, (b) the value of g 2 ( − 1 ) .
Composite Function (Comparison Method) Example 1 Posted on April 18, 2020 by user Example 1Given f : x ↦ h x + k , g : x ↦ ( x + 1 ) 2 + 4 and f g : x ↦ 2 ( x + 1 ) 2 + 5. Find (a) the value of g²(2), (b) the value of h and of k.
Example 3 Posted on April 18, 2020 by user Example 3 If f : x ↦ 2 x + 1 and g : x ↦ 5 x , x ≠ 0 . Find the composite functions gf , fg and the value of gf(4).
Example 2 Posted on April 18, 2020 by user Given f : x ↦ 1 − x and g : x ↦ p x 2 + q . If the composite function gf is defined by g f : x ↦ 3 x 2 − 6 x + 5 , find the value of p and of q, the value of g 2 ( − 1 ) .
Example 2 Posted on April 18, 2020 by user Example 2 Functions f and g are defined by f : x ↦ x − 1 and g : x ↦ 3 − x x + 4 . Find (a) the value of gf(3), (b) the value of fg(-1 ), (c) the composite functions fg, (d) the composite functions gf, (e) the composite functions g², (f) the composite functions f².
Example 1 Posted on April 18, 2020 by user If f : x → x + 5 and g : x → x2 +2x + 3, find the value of gf (2), the value of fg (2 ), the composite functions fg, the composite functions gf, the composite functions g2 , the composite functions f2. correction for part (c) fg( x )=f( x 2 +2x+3 ) =( x 2 +2x+3 )+5 = x 2 +2x+3+5 = x 2 +2x+8