5.5.1a Proving Trigonometric Identities Using Addition Formula And Double Angle Formulae (Part 2)

Example 3:
(a) Given that sinP=35 and sinQ=513,  such that P is an acute angle and Q is an obtuse angle, without using tables or a calculator, find the value of cos (P + Q).

(b) Given that sinA=35 and sinB=1213,  such that A and B are angles in the third and fourth quadrants respectively, without using tables or a calculator, find the value of sin (A 
 B).

Solution:
(a)
sinP=35,cosP=45sinQ=513,cosQ=1213cos(P+Q)=cosAcosBsinAsinB=(45)(1213)(35)(513)=48651565=6365


(b)


sinA=35,cosA=45sinB=513,cosB=1213sin(AB)=sinAcosBcosAsinB=(35)(1213)(45)(513)=36652065=5665

Short Question 19


Question 19 (4 marks):
It is given that cos α = t where t is a constant and 0o ≤ α ≤ 90o.
Express in terms of t
(a) sin (180o + α),
(b) sec 2α.

Solution:
(a)




sin(180o+α)=sin180cosα+cos180sinα=0sinα=sinα=1t2

(b)
sec2α=1cos2α =12cos2α1 =12t21


Long Question 6


Question 6 (10 marks):
(a) Prove that 2 tan x cos2 x = sin 2x.

(b) Hence, solve the equation 4 tan x cos2 x = 1 for 0 ≤ x ≤ 2π.

(c)(i) Sketch the graph of y = sin 2x for 0 ≤ x ≤ 2π.

(c)(ii) Hence, using the same axes, sketch a suitable straight line to find the number of solutions for the equation 4π tan x cos2 x = x – 2π for 0 ≤ x ≤ 2π.
State the number of solutions.

Solution: 
(a)

2tanxcos2x=sin2xLeft hand side=2tanxcos2x=2×sinxcosx×cos2x=2sinxcosx=sin2x= Right hand side (Proven)


(b)
4tanxcos2x=1, 0x2π2(2tanxcos2x)=12sin2x=1sin2x=12Basic angle=π62x=π6,(ππ6),(2π+π6),(3ππ6)2x=π6,5π6,13π6,17π6x=π12,5π12,13π12,17π12



(c)(i)
y = sin 2x, 0 ≤ x ≤ 2π.




(c)(ii)
4πtanxcos2x=x2π2π(2tanxcos2x)=x2π2πsin2x=x2πsin2x=x2π2π2πsin2x=x2π1y=x2π1


Number of solutions = 4

Long Question 5


Question 5 (10 marks):
(a) Prove sin(3x+π6)sin(3xπ6)=cos3x(b) Hence,(i) solve the equation sin(3x2+π6)sin(3x2π6)=12 for 0x2π and give your answer in the simplest fraction form in terms of π radian.(ii) sketch the graph of y=sin(3x+π6)sin(3xπ6)12 for 0xπ.

Solution:
(a) Left hand side,sin(3x+π6)sin(3xπ6)=[sin3xcosπ6+cos3xsinπ6][sin3xcosπ6cos3xsinπ6]=2[cos3xsinπ6]=2[cos3x(12)]=cos3x(right hand side)

(b)(i)sin(3x2+π6)sin(3x2π6)=12,0x2πcos3x2=123x2=π3,(2ππ3),(2π+π3)3x2=π3,5π3,7π3x=2π9,10π9,14π9


(b)(ii) y=sin(3x+π6)sin(3xπ6)12 for 0xπ.y=cos3x12



Long Question 4


Question 4:
Find all the angles between 0° and 360° which satisfy the following equations:
(a) 2 sin ( 2x – 50o) = –1 
(b) 15 sin2x = sin x + 4 sin 30o
(c) 7 sin x cos x = 1  


Solution:

(a)
2 sin ( 2x – 50o) = –1 
sin ( 2x – 50o) = ½  
basic angle ( 2x – 50o) = –30o   ← (sin is negative at third and fourth quadrants)
 
2x – 50o = –30o, 180o + 30o, 360o – 30o, 360o + 180o+ 30o 
← (Take the angles in the range of  0o ≤ x ≤ 720o, which in 2 complete revolutions)  
 
2x – 50o = –30o, 210o, 330o, 570o 
2x = 20o, 260o, 380o, 620o 
x = 10o, 130o , 190o, 310o


(b)
15 sin2x = sin x + 4 sin 30o
15 sin2x = sin x + 4 (½)  ← (sin 30o = ½)
15 sin2x = sin x + 2
15 sin2x – sin x – 2 = 0
(5 sin x – 2)(3 sin x + 1) = 0
sin x25   or sin x = –
When sin x = 25   
Basic angle x = 23º 35’
x = 23º 35’, 180º – 23º 35’
x = 23º 35’, 156º 25’
When sin x = –    ← (sin is negative at third and fourth quadrants)  
Basic angle x = 19º 28’
x = 180º + 19º 28’, 360º – 19º 28’
x = 199º 28’, 340º 32’
Hence x = 23º 35’, 156º 25’, 199º 28’, 340º 32’.


(c)
7 sin x cos x = 1  
sin x cos x 17
2 sin x cos x 27  ←  ( × 2 for both sides)
sin 2x = 27
sin 2x = 0.2857
Basic angle x = 16º 36’
2x = 16º 36’, 180º – 16º 36’, 360º + 16º 36’, 360º + 180º – 16º 36’
2x = 16º 36’, 163º 24’, 376º 36’, 523º 24’
x = 8º 18’, 81º 42’, 188º 18’, 261º 42’

Hence x = 8º 18’, 81º 42’, 188º 18’, 261º 42’.

Long Question 3


Question 3:
(a) Prove that 2tanx2sec2x=tan2x.  

(b)(i) Sketch the graph of y = – tan 2x for 0  x ≤ π
 .

(b)(ii) Hence, by drawing a suitable straight line on the same axes, find the number of solutions satisfying the equation 3xπ+2tanx2sec2x=0  for 0  x π
 .
State the number of solutions.

Solution:
(a)
2tanx2sec2x=tan2xLHS:2tanx2sec2x=2tanx2(1+tan2x)=2tanx2tan2x=tan2x(RHS)


(b)(i) 


(b)(ii)
3xπ+2tanx2sec2x=03xπ+tan2x=0from part (a)tan2x=3xπ y=3xπThe suitable straight line to sketch is y=3xπ.

When x = 0, y = 0.
When x = π, = 3.
  Number of solutions = 3

Short Question 7 & 8


Question 7:
It is given that   sinA=513andcosB=45 , where A is an obtuse angle and B is an acute angle.
Find
(a) tan A
(b) sin (A + B)
(c) cos (A B
 
Solution:
(a)
tanA=512


(b)
sin(A+B)=sinAcosB+cosAsinBsin(A+B)=(513)(45)+(1213)(35)cosA=1213sinB=35sin(A+B)=4133665sin(A+B)=1665


(c)
cos(AB)=cosAcosB+sinAsinBcos(AB)=(1213)(45)+(513)(35)cos(AB)=3365



Question 8:
If sin A = p, and 90° < A < 180°, express in terms of p
(a) tan A
(b) cos A
(c) sin 2A

Solution:
Using Pythagoras Theorem,Adjacent side=12p2=1p2


(a)

tanA=p1p2tan is negative atsecond quadrant


(b)
cosA=1p2cosis negative atsecond quadrant


(c)
sinA=2sinAcosAsinA=2(p)(1p2)sinA=2p1p2

Short Question 11 – 14


Question 11:
Prove the identitycos2x1sinx=1+sinx

Solution:

LHS=cos2x1sinx=1sin2x1sinxsin2x+cos2x=1=(1+sinx)(1sinx)1sinx=1+sinx=RHS



Question 12:
Prove the identity sin 2 x cos 2 x= tan 2 x1 tan 2 x+1

Solution:

RHS = tan 2 x1 tan 2 x+1 = sin 2 x cos 2 x 1 sin 2 x cos 2 x +1 tanx= sinx cosx = sin 2 x cos 2 x cos 2 x sin 2 x+ cos 2 x cos 2 x = sin 2 x cos 2 x sin 2 x+ cos 2 x = sin 2 x cos 2 x sin 2 x+ cos 2 x=1 =LHS Proven


Question 13:
Prove the identity tan 2 θ sin 2 θ= tan 2 θ sin 2 θ

Solution:

LHS = tan 2 θ sin 2 θ = sin 2 θ cos 2 θ sin 2 θ = sin 2 θ sin 2 θ cos 2 θ cos 2 θ = sin 2 θ( 1 cos 2 θ ) cos 2 θ = sin 2 θ sin 2 θ cos 2 θ =( sin 2 θ cos 2 θ )( sin 2 θ ) = tan 2 θ sin 2 θ =RHS Proven



Question 14:
Prove the identity cosec 2 θ ( sec 2 θ tan 2 θ )1= cot 2 θ

Solution:

LHS = cosec 2 θ ( sec 2 θ tan 2 θ )1 = cosec 2 θ ( 1 )1 tan 2 θ+1= sec 2 θ sec 2 θ tan 2 θ=1 = cosec 2 θ1 = cot 2 θ 1+ cot 2 θ=cose c 2 θ cose c 2 θ1= cot 2 θ =RHS Proven


5.6b Solving Trigonometric Equation (Factorization)

5.6b Solving Trigonometric Equation (Factorization)
 
Example:
Find all the angles that satisfy each of the following equations for £ £ 360°.
(a)  cot x = 2 cos x
(b)  3 sec x = 4 cos x  
(c)  16 tan x = cot x

Solution:
(a)
cot x = 2 cos x cos x sin x = 2 cos x cos x = 2 cos x sin x cos x + 2 sin x cos x = 0 cos x ( 1 + 2 sin x ) = 0 cos x = 0 x = 90 , 270 1 + 2 sin x = 0 sin x = 1 2 Basic = 3 0 x = ( 180 + 30 ) , ( 360 30 ) x = 210 , 330 x = 90 , 210 , 270 , 330

(b)
3 sec x = 4 cos x 3 cos x = 4 cos x 3 = 4 cos 2 x cos 2 x = 3 4 cos x = ± 3 2 Basic = 30 x = 30 , ( 180 30 ) , ( 180 + 30 ) , ( 360 30 ) x = 30 , 150 , 210 , 330

(c)
16 tan x = cot x 16 tan x = 1 tan x tan 2 x = 1 16 tan x = ± 1 4 Basic = 14.04 x = 14.04 , ( 180 14.04 ) , ( 180 + 14.04 ) , ( 360 14.04 ) x = 14.04 , 165.96 , 194.04 , 345.96