5.2.2 Six Trigonometric Functions of Any Angle

5.2b Six Trigonometric Functions of Any Angle 

(B) Special Angles

(1) Value of Special Angle 30° and 60°
 
  (a)sin30o=12 (b)cos30o=32(c)tan30o=13  (d)sin60o=32  (e)cos60o=12   (f)tan60o=3 


(2) Value of Special Angle 45°
 
 
  (a)sin45o=12  (b)cos45o=12  (c)tan45o=1     


(3) Value of Special Angle 0°, 90°, 180°, 270°, 360°
 
(a) y = sin x
 



x
0o
90o
180o
270o
360o
sin
0
1
0
-1
0

(b) y = cos x





(c) y = tan x
 


x
0o
90o
180o
270o
360o
tan 
0
  ∞
0
  ∞
0

Short Question 4 – 6


Question 4:
Solve the equation 3 sin A cos A – cos A = 0 for 0°  A  360°.

Solution:
3 sin A cos A – cos A = 0
cos A (3 sin A – 1) = 0
cos A = 0   or   sin A

cos A = 0
A = 90°, 270°

sin A
Basic angle = 19°28'
A = 19°28', 180° – 19°28'
A = 19°28', 160°32'

Hence A = 19°28', 90°, 160°32', 270°.



Question 5:
Solve the equation 4 sin (x – π) cos (x – π) = 1 for 0ox ≤ 360o.
 
Solution:
4 sin (x – π) cos (x – π) = 1
2 [2 sin (x – π) cos (x – π)] = 1
2 sin (x – π) cos (x – π) = ½
sin 2(x – π) = ½  ← (sin 2x= 2 sinx cosx)
sin 2(x – 180o) = ½  ← (π rad = 180o)
sin (2x – 360o) = ½
sin 2x cos 360o – cos 2x sin 360o = ½
sin 2x (1) – cos 2x (0)  = ½  ← (cos 360o = 1, sin 360o = 0)
sin 2x = ½
basic angle = 30o  ← (special angle, sin 30o= ½)
2x = 30o, 150o, 390o, 510o
x = 15o, 75o, 195o, 255o

Long Question 1 & 2


Question 1:
(a) Sketch the graph of y = cos 2x for 0°  x  180°.
(b) Hence, by drawing a suitable straight line on the same axes, find the number of solutions satisfying the equation 2 sin2x=2x180 for 0°  x  180°.

Solution:

(a)(b)

2 sin2x=2x18012 sin2x=1(2x180)cos2x=x1801y=x1801x=0,  y=1x=180,  y=0Number of solutions = 2



Question 2:
(a) Sketch the graph of y=32cos2x for 0x32π.
(b) Hence, using the same axes, sketch a suitable straight line to find the number of solutions to the equation 43πxcos2x=32 for 0x32π
State the number of solutions.

Solution:

(a)(b)



43πxcos2x=32cos2x=43πx3232cos2x=32(43πx32)y=2πx94To sketch the graph of y=2πx94x=0, y=94x=3π2, y=34Number of solutions =Number of intersection points= 3

5.3.4 Sketching Graphs of Trigonometric Functions (Part 3)


5.3.4 Sketching Graphs of Trigonometric Functions (Part 3)
Example 2:
(a) Sketch the graph y = –½ cos x for 0 ≤ x 2π.
(b) Hence, using the same axes, sketch a suitable graph to find the number of solutions to the equation π2x+cosx=0 for 0 ≤ x 2π.
State the number of solutions.

Solution:
(a)



(b)


π2x+cosx=0π2x=cosxπ4x=12cosxMultiply both sides by12y=π4xy=12cosx

The suitable graph to draw is y=π4x.  
x
π2
π
2π
y=π4x
½
¼
From the graphs, there are two points of intersection for 0 ≤ x ≤ 2π.
Number of solutions = 2.


Basic Trigonometric Identities


5.4 Basic Trigonometric Identities

Three basic trigonometric identities are:

sin2 x + cos2 x = 1
tan2 x + 1 = sec2 x
cot2 x + 1 = cosec2 x

[adinserter block="3"]
Example 1 (To Prove Trigonometric Identities which involve the Three Basic Identities)
Prove each of the following trigonometric identities.
(a) sin2 x – cos2 x = 1 – 2 cos2 x
(b) (1 – cosec2 x) (1– sec2 x) = 1

Solution:
(a)
sin2 x– cos2 x = 1 – 2 cos2x
LHS: sin2 x – cos2 x
= 1 – cos2 x – cos2 x
= 1 – 2 cos2 x (RHS)
 
(b)
(1cosec2x)(1sec2x)=1LHS:(1cosec2x)(1sec2x)=(cot2x)(tan2x)=(cot2x)(tan2x)=(1tan2x)tan2x=1(RHS)



Example 2 (To Solve Trigonometric Equations which involve the Three Basic Identities)
Solve the following trigonometric equations for 0ox ≤ 360o.
(a) sin2 x cos x + 1 = cos x
(b) 2 cosec2 x – 5 cot x = 0

Solution:
(a)
sin2 cos x + 1 = cos x
(1 – cos2 x) cos x + 1 = cos x
cos x – cos3 x + 1 = cos x
cos3 x = 1
cos x = 1
x = 0o, 360o

(b)
2 cosec2 x – 5 cot x = 0
2 (1 + cot2 x) – 5 cot x = 0
2 + 2 cot2 x – 5 cot x = 0
2 cot2 x – 5 cot x + 2 = 0
(2 cot x – 1) (cot x – 2) = 0
cot x= ½ or cotx = 2
cot x= ½ or cot x = 2
tan x = 2 tan x = ½
x =63.43o, 243.43o   x = 26.57o, 206.57o

(Note: tangent is positive in the first and third quadrants)

Thus, x = 26.57o, 63.43o, 206.57o, 243.43o