Bab 4 Penaakulan Matematik

4.4 Implikasi
(A) Mengenal pasti antejadian dan akibat bagi suatu implikasi
1.      Bagi dua pernyataan pdan q, ayat ‘jika p, maka q’ dikenali sebagai implikasi.
2.      pdikenali sebagai antejadian.
qdikenali sebagai akibat.

Contoh:
Kenal pasti antejadian dan akibat  bagi setiap implikasi yang berikut.
(a)  Jika m = 2, maka 2m2 + m = 10
(b) Jika PQ=P, maka QP  

Penyelesaian:
(a)  Antejadian: m = 2
Akibat: 2 m2 + m = 10

(b) Antejadian:PQ=P Akibat:QP


(B) Implikasi dalam bentuk ‘p jika dan hanya jika q
1.      Dua implikasi ‘jika p, maka q dan ‘jika q, maka p boleh ditulis sebagai ‘pjika dan hanya jika q.
2.      Begitu jugak, dua pernyataan boleh ditulis dari satu pernyataan yang berbentuk ‘p jika dan hanya jika qseperti berikut:
Implikasi 1: Jika p, maka q.
Implikasi 2: Jika q, maka p.

Contoh 1:
Diberi bahawa p: x + 1 = 8
  q: x = 7
Bina satu pernyataan matematik dalam bentuk implikasi.
(a)  Jika p, maka q.
(b)  p jika dan hanya jika q.

Penyelesaian:
(a)  Jika x + 1 = 8, maka x = 7.
(b)  x + 1 = 8 jika dan hanya jika x = 7.

Contoh 2:
Tulis dua Implikasi daripada ayat yang berikut:
x3 = 64 jika dan hanya jika x = 4.

Penyelesaian:
Jika x3= 64, maka x = 4.
Jika x = 4, maka x3 = 64.


(C) Akas bagi satu implikasi
1.      Akas bagi implikasi ‘jika p, maka q’ ialah jikaq, maka p’.

Contoh:
Nyatakan akas bagi setiap implikasi yang berikut.
(a)  Jika x2 + x – 2 = 0, maka (x – 1)(x + 2) = 0.
(b)  Jika x = 7, maka x + 2 = 9.

Penyelesaian:
(a)  Jika (x – 1)(x + 2) = 0, maka x2+ x – 2 = 0.
(b)  Jika x + 2 = 9, makathen x = 7.