Short Questions (Question 1 & 2)


Question 1 (2 marks):
Diagram shows a probability distribution graph for a random variable X, X ~ N(μ, σ2).

Diagram

It is given that AB is the axis of symmetry of the graph.
(a) State the value of μ.
(b) If the area of the shaded region is 0.38, state the value of P(5 ≤ X ≤ 15).

Solution:
(a)
μ = 0

(b)
P(10 ≤ X ≤ 15)
= 0.5 – 0.38
= 0.12

P(5 ≤ X ≤ 10)
= P(10 ≤ X ≤ 15)
= 0.12

Thus P(5 ≤ X ≤ 15)
= 0.12 + 0.12
= 0.24




Question 2 (3 marks):
Diagram shows the graph of binomial distribution X ~ B(3, p).

Diagram

(a)
Express P(X = 0) + P(X > 2) in terms of a and b.
(b) Find the value of p.


Solution:
(a)
P(X = 0) + P(X = 1) + P(X = 2) + P(X = 3) = 1
P(X = 0) + a + b + P(X = 3) = 1
P(X = 0) + P(X = 3) = 1 – a – b
P(X = 0) + P(X > 2) = 1 – a – b

(b)

P( X=0 )= 27 343 3 C 0 ( p 0 ) ( 1p ) 3 = 27 343 1×1× ( 1p ) 3 = ( 3 7 ) 3 1p= 3 7 p= 4 7

(Long Questions) – Question 10


Question 11 (10 marks):
Solution by scale drawing is not accepted.
Diagram shows a quadrilateral PQRS on a horizontal plane.
VQSP is a pyramid such that PQ = 12 m and V is 5 m vertically above P.
Find
(a)QSR,
(b) the length, in m, of QS,
(c) the area, in m2, of inclined plane QVS.


Solution: 
(a)
sinQSR 20.5 = sin 64 o 22 sinQSR= sin 64 o 22 ×20.5 sinQSR=0.8375 QSR= 56 o 52'


(b)
QRS= 180 o 64 o 56 o 52'   = 59 o 8' QS sin 59 o 8' = 22 sin 64 o QS= 22 sin 64 o ×sin 59 o 8' QS=21.01 m


(c)


Q V 2 =P Q 2 +V P 2 QV= 12 2 + 5 2 QV=13 m S V 2 =P S 2 +V P 2 SV= 10 2 + 5 2 SV= 125  m QS=21.01 m 21.01 2 = 13 2 + ( 125 ) 2 2( 13 )( 125 )cosθ 26( 125 )cosθ=169+125441.42 cosθ= 169+125441.42 26( 125 ) cosθ=0.5071 θ= 120 o 28' Area of QVS = 1 2 ×13× 125 ×sin 120 o 28' =62.64  m 2


(Long Questions) – Question 9


Question 9 (10 marks):
Solution by scale drawing is not accepted.
Diagram shows a transparent prism with a rectangular base PQRS. The inclined surface PQUT is a square with sides 12 cm and the inclined surface RSTU is a rectangle. PTS is a uniform cross section of the prism. QST is a green coloured plane in the prism.


It is given that ∠PST = 37o and ∠TPS = 45o.
Find
(a) the length, in cm, of ST,
(b) the area, in cm2, of the green coloured plane.
(c) the shortest length, in cm, from point T to the straight line QS.


Solution:
(a)



ST sin 45 o = 12 sin 37 o ST= 12 sin 37 o ×sin 45 o ST=14.1 cm


(b)
Q T 2 =Q P 2 +P T 2 Q T 2 = 12 2 + 12 2 QT= 12 2 + 12 2 =16.97 cm PTS= 180 o 45 o 37 o = 98 o PS sin 98 o = 12 sin 37 o PS= 12 sin 37 o ×sin 98 o PS=19.75 cm Q S 2 =Q P 2 +P S 2 QS= Q P 2 +P S 2 QS= 12 2 + 19.75 2 QS=23.11 cm




Q S 2 =Q T 2 +S T 2 2( QT )( ST )cosQTS 23.11 2 = 16.97 2 + 14.1 2 2( 16.97 )( 14.1 )cosQTS cosQTS= 16.97 2 + 14.1 2 23.11 2 2( 16.97 )( 14.1 ) cosQTS= 47.28 478.55 QTS= 95.67 o Thus, area of green coloured plane QTS = 1 2 ( 16.97 )( 14.1 )sin 95.67 o =119.05  cm 2


(c)



Let the shortest length from point T to the straight line QS is h. Area of ΔQTS=119.05 1 2 ( h )( 23.11 )=119.05 h=10.3 cm


(Long Questions) – Question 6


Question 6 (10 marks):
Table 2 shows the information related to four ingredients, J, K, L and M, used in the production of a type of energy drinks.


The production cost for this energy drinks is RM47600 in the year 2017.
(a) If the price of ingredient K in the year 2013 is RM4.20, find its price in the year 2017.

(b)
Percentage of usage for several ingredients was given in Table 2.
Calculate the corresponding production cost in the year 2013.

(c)
The production cost is expected to increase by 50% from the year 2017 to the year 2019.
Calculate the percentage of changes in production cost from the year 2013 to the year 2019.

Solution:
(a)
P 2017 P 2013 ×100=120 P 2017 4.20 ×100=120 P 2017 = 4.20 100 ×120 P 2017 =RM5.04


(b)

Percentage of usage of ingredient L =( 100101050 )% =30% Composite index for the production cost in the year 2017 based on the year 2013,  I ¯ I ¯ = IW W I ¯ = ( 140 )( 10 )+( 120 )( 10 )+( 160 )( 30 )+( 90 )( 50 ) 10+10+30+50 I ¯ = 11900 100 I ¯ =119 P 2017 P 2013 ×100=119 47600 P 2013 ×100=119 P 2013 =47600× 100 119 P 2013 =RM40000 The production cost in the year 2013  is RM40000.



(c)

year 2013  +19%  year 2017  +50%  year 2019 Expected composite index for the year 2019 based on the year 2013,   I ¯ =119× 150 100 =178.5 Percentage of changes =[ 178.5100 ]% =78.5%


(Long Questions) – Question 5


Question 5 (10 marks):
Table 2 shows the prices and the price indices of three types of ingredients P, Q and R, used in the production of a type of instant noodle.


(a) The price of ingredient Q increased by 20% from the year 2014 to the year 2016.
(i) State the value of x.
(ii) Find the value of y.

(b) Calculate the composite index for the cost of making the instant noodles for the year 2016 based on the year 2014.

(c) It is given that the composite index for the cost of making the instant noodles increased by 40% from the year 2012 to the year 2016.

(i)
Calculate the composite index for the cost of making the instant noodles in the year 2014 based on the year 2012.

(ii)
The cost of making a packet of instant noodle is 10 sen in the year 2012.
Find the maximum number of packet of instant noodles that can be produced using an allocation of RM80 in the year 2016.

Solution: 
(a)(i)
x = 120

(a)(ii)
P 2016 P 2014 ×100=120 3.00 y ×100=120 y= 3.00 120 ×100 y=2.50


(b)
Composite index for the cost of making the instant noodles in the year 2016 based on the year 2014,  I ¯ I ¯ = IW W I ¯ = ( 132.8 )( 50 )+( 120 )( 20 )+( 190 )( 1 ) 50+20+1 I ¯ = 9230 71 I ¯ =130


(c)(i)
Given  I 2016 I 2012 ×100=140  I 2016 I 2012 = 140 100 and  I 2016 I 2014 ×100=130  I 2016 I 2014 = 130 100 Composite index for the cost of making the instant noodle  in the year 2014 based on the year 2012, I ¯ = I 2014 I 2012 ×100 I ¯ = I 2014 I 2016 × I 2016 I 2012 ×100 I ¯ = 100 130 × 140 100 ×100 I ¯ =107.69


(c)(ii)
P 2016 P 2012 ×100=140 P 2016 10 ×100=140 P 2016 = 140×10 100 P 2016 =14 sen Number of pack of instant noodles = RM80 RM0.14 =571.4 Maximum number of pack of instant noodles=571.


Long Question 6


Question 6 (10 marks):
(a) Prove that 2 tan x cos2 x = sin 2x.

(b) Hence, solve the equation 4 tan x cos2 x = 1 for 0 ≤ x ≤ 2π.

(c)(i) Sketch the graph of y = sin 2x for 0 ≤ x ≤ 2π.

(c)(ii) Hence, using the same axes, sketch a suitable straight line to find the number of solutions for the equation 4π tan x cos2 x = x – 2π for 0 ≤ x ≤ 2π.
State the number of solutions.

Solution: 
(a)

2tanx cos 2 x=sin2x Left hand side =2tanx cos 2 x =2× sinx cosx × cos 2 x =2sinxcosx =sin2x = Right hand side ( Proven )


(b)
4tanx cos 2 x=1, 0x2π 2( 2tanx cos 2 x )=1 2sin2x=1 sin2x= 1 2 Basic angle= π 6 2x= π 6 ,( π π 6 ),( 2π+ π 6 ),( 3π π 6 ) 2x= π 6 , 5π 6 , 13π 6 , 17π 6 x= π 12 , 5π 12 , 13π 12 , 17π 12



(c)(i)
y = sin 2x, 0 ≤ x ≤ 2π.




(c)(ii)
4πtanx cos 2 x=x2π 2π( 2tanx cos 2 x )=x2π 2πsin2x=x2π sin2x= x 2π 2π 2π sin2x= x 2π 1 y= x 2π 1


Number of solutions = 4

Long Question 5


Question 5 (10 marks):
( a ) Prove sin( 3x+ π 6 )sin( 3x π 6 )=cos3x ( b ) Hence, ( i ) solve the equation sin( 3x 2 + π 6 )sin( 3x 2 π 6 )= 1 2  for 0x2π  and give your answer in the simplest fraction form in terms of π radian. ( ii ) sketch the graph of y=sin( 3x+ π 6 )sin( 3x π 6 ) 1 2  for 0xπ.

Solution:
( a ) Left hand side, sin( 3x+ π 6 )sin( 3x π 6 ) =[ sin3xcos π 6 +cos3xsin π 6 ][ sin3xcos π 6 cos3xsin π 6 ] =2[ cos3xsin π 6 ] =2[ cos3x( 1 2 ) ] =cos3x( right hand side )

( b )( i ) sin( 3x 2 + π 6 )sin( 3x 2 π 6 )= 1 2 ,0x2π cos 3x 2 = 1 2 3x 2 = π 3 ,( 2π π 3 ),( 2π+ π 3 ) 3x 2 = π 3 , 5π 3 , 7π 3 x= 2π 9 , 10π 9 , 14π 9


( b )( ii )  y=sin( 3x+ π 6 )sin( 3x π 6 ) 1 2  for 0xπ. y=cos3x 1 2



Long Questions (Question 12)


Question 12 (10 marks):
(a) The mass of honeydews produced in a plantation is normally distributed with a mean of 0.8 kg and a standard deviation of 0.25 kg. The honeydews are being classified into three grades A, B and C according to their masses:

Grade A > Grade B > Grade
C

(i)
The minimum mass of a grade A honeydew is 1.2 kg.
If a honeydew is picked at random from the plantation, find the probability that the honeydew is of grade A.

(ii)
Find the minimum mass, in kg, of grade B honeydew if 20% of the honeydews are of grade C.

(b)
At the Shoot the Duck game booth at an amusement park, the probability of winning is 25%.
Jacky bought tickets to play n games. The probability for Jacky to win once is 10 times the probability of losing all games.

(i)
Find the value of n.

(ii)
Calculate the standard deviation of the number of wins.

Solution:
μ = 0.8 kg, σ = 0.25 kg

(a)(i)

P( grade A )=P( X>1.2 )   =P( Z> 1.20.8 0.25 )   =P( Z>1.6 )   =0.0548

(a)(ii)
P( grade C )=0.2 P( X<m )=0.2 P( Z< m0.8 0.25 )=0.2 P( Z<0.842 )=0.2     m0.8 0.25 =0.842 m0.8=0.2105 m=0.5895 Minimum mass of grade B honeydew is the same as the maximum mass of grade C honeydew. Minimum mass of grade B=0.5895 kg


(b)
p=0.25, X=B( n, 0.25 ) P( X=r )= C n r p r q nr    = C n r ( 0.25 ) r ( 0.75 ) nr

(b)(i)
P( X=1 )=10 P( X=0 ) C n r ( 0.25 ) 1 ( 0.75 ) nr =10× C n 0 ( 0.25 ) 0 ( 0.75 ) n n×0.25× ( 0.75 ) nr =10×1×1× ( 0.75 ) n 0.25n× ( 0.75 ) n1 0.75 n =10 0.25n× 0.75 1 =10 1 4 n( 4 3 )=10 1 3 n=10 n=30

(b)(ii)
n=30, p=0.25 Standard deviation = np( 1p ) = 30×0.25×0.75 =2.372

Long Questions (Question 11)


Question 11 (10 marks):
A study shows that the credit card balance of the customers is normally distributed as shown in Diagram 6.

(a)(i) Find the standard deviation.
(ii) If 30 customers are chosen at random, find the number of customers who have a credit card balance between RM1800 and RM3000.

(b) It is found that 25% of the customers have a credit card balance less than RM y.
Find the value of y.

Solution:
(a)(i)
μ=2870,x=3770 P( X>3770 )=15.87% P( Z> 37702870 σ )=0.1587 P( Z>1.0 )=0.1587 37702870 σ =1.0 σ=900


(a)(ii)
P( 1800<X<3000 ) =P( 18002870 900 <Z< 30002870 900 ) =P( 1.189<Z<0.144 ) =1P( Z1.189 )P( Z0.144 ) =10.11720.4427 =0.4401 Number of customers=0.4401×30   =14


(b)
μ=2870,x=y P( x<y )=25% P( Z< y2870 900 )=0.25 y2870 900 =0.674 y=2263.40


Long Question 10


Question 10 (10 marks):
Diagram shows a curve y = 2x2 – 18 and the straight line PQ which is a tangent to the curve at point K.

It is given that the gradient of the straight line PQ is 4.
(a) Find the coordinates of point K
(b) Calculate the area of the shaded region.

(c) When the region bounded by the curve, the x-axis and the straight line y = h is rotated through 180o about the y-axis, the volume generated is 65π unit3.
Find the value of h.

Solution: 
(a)
y=2 x 2 18 dy dx =4x Gradient of straight line PQ=4 4x=4 x=1 When x=1,  y=2 ( 1 ) 2 18=16 Coordinates of K=( 1,16 ).


(b)
At x-axis, y=0 2 x 2 18=0 2 x 2 =18 x 2 =9 x=±3 The curve cuts the x-axis at ( 3,0 ) and ( 3,0 ). Area of shaded region = Area of triangleArea under the curve = 1 2 ( 51 )( 16 ) 1 3 ydx =32 1 3 ( 2 x 2 18 )dx =32| [ 2 x 3 3 18x ] 1 3 | =32| ( 2 ( 3 ) 3 3 18( 3 ) )( 2 ( 1 ) 3 3 18( 1 ) ) | =32| ( 1854 2 3 +18 ) | =32| 18 2 3 | =3218 2 3 =13 1 3  units 2


(c)
Volume generated=65π π h 0 x 2 dy =65π π h 0 ( y 2 +9 )dx =65π y=2 x 2 18 x 2 = y 2 +9 [ y 2 4 +9y ] h 0 =65 0( h 2 4 +9h )=65 h 2 4 9h=65 h 2 +36h+260=0 ( h+10 )( h+26 )=0 h=10   or   h=26 ( rejected ) Thus, h=10