8.4.5 Taburan Kebarangkalian, SPM Praktis (Kertas 2)


Soalan 12:
(a) Didapati bahawa 60% murid dari sebuah kelas tertentu mendapat gred A bagi Bahasa Inggeris dalam peperiksaan percubaan O level.
Jika 10 orang murid dari kelas itu dipilih secara rawak, cari kebarangkalian bahawa
(i) tepat 7orang murid mendapat gred A.
(ii) tidak lebih daripada 7 orang murid mendapat gred A.

(b) Rajah di bawah menunjukkan satu graf taburan normal piawai yang mewakili isi padu kicap dalam botol yang dihasilkan oleh sebuah kilang.

Diberi bahawa min ialah 950 cm3 dan  variansnya ialah 256 cm6. Jika peratus isi padu yang melebihi V ialah 30.5%, cari
(i) nilai V,
(ii) kebarangkalian bahawa isi padu antara 930 cm3 dan 960 cm3.


Penyelesaian:

(a)(i) P(X=r)= c n r . p r . q nr P(X=7)= C 10 7 ( 0.6 ) 7 ( 0.4 ) 3    =0.0860 ( ii ) P(X7) =1P(X>7) =1P( X=8 )P( X=9 )P( X=10 ) =1 C 10 8 ( 0.6 ) 8 ( 0.4 ) 2 C 10 9 ( 0.6 ) 9 ( 0.4 ) 1 C 10 10 ( 0.6 ) 10 ( 0.4 ) 0 =10.12090.04030.0060 =0.8328

(b)( i ) P( X>V )=30.5% P( Z> V950 16 )=0.305 P( Z>0.51 )=0.305    V950 16 =0.51 V=0.51( 16 )+950    =958.16  cm 3

( ii ) Kebarangkalian =P( 930<X<960 ) =P( 930950 16 <Z< 960950 16 ) =P( 1.25<Z<0.625 ) =1P( Z>1.25 )P( Z>0.625 ) =10.10560.2660 =0.6284

8.4.5 Taburan Kebarangkalian, SPM Praktis (Kertas 2)


Soalan 11:
(a) 30% daripada pen di dalam sebuah kotak berwarna biru. Charlie memilih 4 batang pen secara rawak. Cari kebarangkalian sekurang-kurangnya satu batang pen yang dipilih tidak berwarna biru.

(b) Jisim betik yang dituai dari sebuah ladang buah-buahan adalah mengikut taburan normal dengan min 2 kg dan sisihan piawai h kg. Diberi bahawa 15.87% daripada betik itu mempunyai jisim lebih daripada 2.5 kg.
(i) Hitung nilai h.
(ii) Diberi bilangan betik yang dituai dari lading buah-buahan itu ialah 1320, cari bilangan betik yang mempunyai jisim antara 1.0 kg hingga 2.5 kg.


Penyelesaian:
(a) P( X1 )=1P( X=0 )               =1 C 4 4 ( 0.3 ) 4 ( 0.7 ) 0               =0.9919

(b) μ=2, σ=h ( i ) P( X>2.5 )=15.87% P( Z> 2.52 h )=0.1587 P( Z>1.0 )=0.1587        2.52 h =1.0                 h=0.5


( ii ) p=P( 1.0<x<2.5 )   =P( 1.02 0.5 <Z< 2.52 0.5 )   =P( 2<Z<1 )   =1P( Z<2 )P( Z>1 )   =1P( Z>2 )P( Z>1 )   =10.02280.1587   =0.8185 Bilangan betik=0.8185×1320    =1080

8.4.5 Taburan Kebarangkalian, SPM Praktis (Kertas 2)


Soalan 10:
(a) Satu tinjauan dijalankan berkenaan kelab bulan sabit merah di sebuah sekolah.
Didapati bahawa min bilangan ahli kelab bulan sabit merah ialah 315, varians ialah 126 dan kebarangkalian seorang murid menyertai kelab bulan sabit merah ialah p.

(i) Cari nilai p.

(ii) Jika 8 orang murid dari sekolah itu dipilih secara rawak, cari kebarangkalian lebih daripada 5 orang murid menyertai kelab bulan sabit merah.

(b) Jisim baja yang digunakan di sebuah dusun buah-buahan mempunyai taburan normal dengan min 5 kg dan varians 0.8 kg. Cari kebarangkalian dalam satu hari tertentu, lebih daripada 6 kg baja digunakan.


Penyelesaian:
(a)(i) np=315 np( 1p )=126 315( 1p )=126  1p= 126 315  1p=0.4    p=0.6 ( ii ) n=8,p=0.6 P(X=r)= c n r . p r . q nr P(X=r)= C 8 r ( 0.6 ) r ( 0.4 ) 8 P(X>5) =P( X=6 )+P( X=7 )+P( X=8 ) = C 8 6 ( 0.6 ) 6 ( 0.4 ) 2 + C 8 7 ( 0.6 ) 7 ( 0.4 ) 1 + C 8 8 ( 0.6 ) 8 ( 0.4 ) 0 =0.20902+0.08958+0.01680 =0.3154

(b) P( X>6 )=P( Z> 65 0.8 )    =P( Z>1.12 )    =0.1314

Bab 19 Taburan Kebarangkalian


Soalan 7 (4 markah):
Sebuah badan sukarela menganjurkan kursus pertolongan cemas 4 kali sebulan, setiap Sabtu dari Mac hingga September.
[Andaikan setiap bulan mempunyai empat hari Sabtu]

Salmah berhasrat untuk menyertai kursus tersebut tetapi dia mungkin perlu meluangkan satu hari Sabtu setiap bulan untuk menemani ibunya ke hospital.
Kebarangkalian bahawa Salmah akan hadir ke kursus tersebut pada setiap Sabtu ialah 0.8. Salmah akan diberi sijil kehadiran bulanan jika dia boleh menghadiri kursus tersebut sekurang-kurangnya 3 kali sebulan.

(a)
 Cari kebarangkalian bahawa Salmah akan diberi sijil kehadiran bulanan.

(b)
Salmah akan layak untuk menduduki ujian pertolongan cemas jika dia memperoleh lebih daripada 5 sijil kehadiran bulanan.
Cari kebarangkalian bahawa Salmah layak untuk menduduki ujian pertolongan cemas itu.

Penyelesaian:
(a)

P( X=r )= C n r p r q nr p=0.8, q=0.2, n=4, r=3, 4 P( X3 ) =P( X=3 )+P( X=4 ) = C 4 3 ( 0.8 ) 3 ( 0.2 ) 1 + C 4 4 ( 0.8 ) 4 ( 0.2 ) 0 =0.4096+0.4096 =0.8192

(b)

P( X=r )= C n r p r q nr p=0.8192, q=0.1808, n=7, r=6, 7 P( X>5 ) =P( X=6 )+P( X=7 ) = C 7 6 ( 0.8192 ) 6 ( 0.1808 ) 1 + C 7 7 ( 0.8192 ) 7 ( 0.1808 ) 0 =0.3825+0.2476 =0.6301



Soalan 8 (4 markah):
Rajah menunjukkan satu graf taburan normal piawai.

Rajah

Kebarangkalian yang diwakili oleh luas kawasan berlorek ialah 0.2881.
(a) Cari nilai h.
(b) X ialah pemboleh ubah rawak selanjar bertaburan secara normal dengan min, μ dan varians 16.
Cari nilai μ jika skor-z bagi X = 58.8 ialah h.

Penyelesaian:
(a)
P(X < h) = 0.5 – 0.2881
P(X < h) = 0.2119
P(X < –0.8) = 0.2119
h = –0.8

(b)

X=58.8 Xμ σ = 58.8μ σ    Z= 58.8μ 4    h= 58.8μ 4 0.8= 58.8μ 4 3.2=58.8μ μ=58.8+3.2 μ=62

Bab 19 Taburan Kebarangkalian


Soalan 5 (2 markah):
Rajah menunjukkan graf taburan kebarangkalian bagi suatu pemboleh ubah rawak X, X ~ N(μ, σ2).

Rajah

Diberi bahawa AB adalah paksi simetri bagi graf itu.
(a) Nyatakan nilai μ.
(b) Jika luas kawasan berlorek ialah 0.38, nyatakan nilai bagi P(5 ≤ X ≤ 15).

Penyelesaian:
(a)
μ = 0

(b)
P(10 ≤ X ≤ 15)
= 0.5 – 0.38
= 0.12

P(5 ≤ X ≤ 10)
= P(10 ≤ X ≤ 15)
= 0.12

Maka P(5 ≤ X ≤ 15)
= 0.12 + 0.12
= 0.24




Soalan 6 (3 markah):
Rajah menunjukkan graf bagi taburan binomial X ~ B(3, p).

Rajah

(a)
 Ungkapkan P(X = 0) + P(X > 2) dalam sebutan a dan b.
(b) Cari nilai p.

Penyelesaian:
(a)
P(X = 0) + P(X = 1) + P(X = 2) + P(X = 3) = 1
P(X = 0) + a + b + P(X = 3) = 1
P(X = 0) + P(X = 3) = 1 – a – b
P(X = 0) + P(X > 2) = 1 – a – b

(b)

P( X=0 )= 27 343 3 C 0 ( p 0 ) ( 1p ) 3 = 27 343 1×1× ( 1p ) 3 = ( 3 7 ) 3 1p= 3 7 p= 4 7

8.4.5 Taburan Kebarangkalian, SPM Praktis (Kertas 2)


Soalan 9 (10 markah):
Satu kajian menunjukkan bahawa baki hutang kad kredit pelanggan-pelanggan adalah bertabur secara normal seperti yang ditunjukkan dalam Rajah 6.


(a)(i) Cari sisihan piawai.
(ii) Jika 30 orang pelanggan dipilih secara rawak, cari pelanggan yang mempunyai baki hutang kad kredit di antara RM1800 dan RM3000.

(b) Didapati bahawa 25% pelanggan mempunyai jumlah baki hutang kad kredit kurang daripada RM y.
Cari nilai y.


Penyelesaian:
(a)(i)
μ=2870,x=3770 P( X>3770 )=15.87% P( Z> 37702870 σ )=0.1587 P( Z>1.0 )=0.1587 37702870 σ =1.0 σ=900


(a)(ii)
P( 1800<X<3000 ) =P( 18002870 900 <Z< 30002870 900 ) =P( 1.189<Z<0.144 ) =1P( Z1.189 )P( Z0.144 ) =10.11720.4427 =0.4401 Bilangan pelanggan=0.4401×30   =14


(b)
μ=2870,x=y P( x<y )=25% P( Z< y2870 900 )=0.25 y2870 900 =0.674 y=2263.40


8.4.4 Taburan Kebarangkalian, SPM Praktis (Kertas 2)


Soalan 8 (10 markah):
(a) Jisim bagi buah tembikai susu yang dihasilkan di sebuah ladang bertaburan secara normal dengan min 0.8 kg dan sisihan piawai 0.25 kg. Buah tempikai susu itu dikelaskan kepada tiga gred A, B dan C mengikut jisimnya:

Gred A > Gred B > Gred 
C

(i)
 Jisim minimum bagi sebiji tembikai susu gred A ialah 1.2 kg.
Jika sebiji tembikai susu diambil secara rawak dari ladang itu, cari kebarangkalian bahawa buah tembikai susu itu adalah gred A.

(ii)
 Cari jisim minimum, dalam kg, buah tembikai susu gred B jika 20% daripada buah-buah tembikai susu itu adalah gred C.


(b)
 Dalam permainan Menembak Itik di taman hiburan, kebarangkalian untuk menang ialah 25%.
Jacky telah membeli tiket untuk bermain permainan itu sebanyak n kali. Kebarangkalian untuk Jacky menang sekali dalam permainan itu adalah 10 kali ganda kebarangkalian kalah dalam semua permainan.

(i)
 Cari nilai n.

(ii)
 Hitung sisihan piawai bagi bilangan kemenangan.


Penyelesaian:
μ = 0.8 kg, σ = 0.25 kg

(a)(i)

P( gred A )=P( X>1.2 )                  =P( Z> 1.20.8 0.25 )                  =P( Z>1.6 )                  =0.0548

(a)(ii)
P( gred C )=0.2 P( X<m )=0.2 P( Z< m0.8 0.25 )=0.2 P( Z<0.842 )=0.2             m0.8 0.25 =0.842             m0.8=0.2105                     m=0.5895 Jisim minimum buah tembikai susu gred B adalah sama dengan jisim  maximum buah tembikai susu gred C. Jisim minimum gred B=0.5895 kg



(b)
p=0.25, X=B( n, 0.25 ) P( X=r )= C n r p r q nr    = C n r ( 0.25 ) r ( 0.75 ) nr


(b)(i)
P( X=1 )=10 P( X=0 ) C n r ( 0.25 ) 1 ( 0.75 ) nr =10× C n 0 ( 0.25 ) 0 ( 0.75 ) n C n 1 ( 0.25 ) 1 ( 0.75 ) n1 =10×1×1× ( 0.75 ) n n×0.25× ( 0.75 ) n1 =10× ( 0.75 ) n 0.25n× ( 0.75 ) n1 0.75 n =10 0.25n× 0.75 1 =10 1 4 n ( 3 4 ) 1 =10 1 4 n( 4 3 )=10 1 3 n=10 n=30


(b)(ii)
n=30, p=0.25, q=0.75 Sisihan piawai = npq = 30×0.25×0.75 =2.372

Bab 19 Taburan Kebarangkalian

8.4 Taburan Kebarangkalian, SPM Praktis (Kertas 2)
Soalan 1:
Dalam suatu peperiksaan, 2 daripada 5 pelajar yang mengambil peperiksaan itu gagal dalam kertas kimia.
(a)     Jika 6 orang dipilih secara rawak daripada pelajar-pelajar, cari kebarangkalian bahawa tidak melebihi 2 orang pelajar gagal dalam kertas kimia.
(b)   Jika terdapat 200 orang pelajar tingkatan 4 dalam sekolah itu, cari min dan sisihan piawai bilangan orang pelajar gagal kertas kimia.

Penyelesaian:
(a)
X ~ Bilangan pelajar gagal kertas kimia
X ~ B (n, p)
X~B( 6,  2 5 )

P (X = r) = nCr. pr. qn-r
P (X ≤ 2)
= P(X = 0) + P(X = 1) + P(X= 2)
= C 6 0 ( 2 5 ) 0 ( 3 5 ) 6 + C 6 1 ( 2 5 ) 1 ( 3 5 ) 5 + C 6 2 ( 2 5 ) 2 ( 3 5 ) 4  
= 0.0467 + 0.1866 + 0.3110
= 0.5443

(b)
X ~ B (n, p)
X~B( 200,  2 5 ) Min bagi X =np=200× 2 5 =80 Sisihan piawai bagi X = npq = 200× 2 5 × 3 5 = 48 =6.93



Soalan 2:
5% daripada bekalan mangga diterima oleh sebuah supermarket adalah rosak.
(a)    Jika suatu sampel yang terdiri daripada 12 biji mangga dipilih secara rawak, cari kebarangkalian bahawa sekurang-kurangnya 2 biji mangga adalah rosak.
(b)   Cari bilangan minimum mangga yang perlu dipilih supaya kebarangkalian untuk mendapatkan sekurang-kurangnya sebiji mangga rosak adalah lebih daripada 0.85.  
  
Penyelesaian:
(a)
X ~ B (12, 0.05)
1 – P(X ≤ 1)
= 1 – [P(X = 0) + P (X = 1)]
= 1 – [12C0 (0.05)0 (0.95)12 + 12C1 (0.05)1 (0.95)11]
= 1 – 0.8816
= 0.1184

(b)
P (X ≥ 1) > 0.85
1 – P(X = 0) > 0.85
P (X = 0) < 0.15
nC0(0.05)0 (0.95)n< 0.15
nlg 0.95 < lg 0.15
n > 36.98
n = 37

Oleh itu, bilangan minimum mangga yang perlu dipilih ialah 37 sekiranya kebarangkalian lebih daripada 0.85.


Soalan 3:
Dalam suatu kajian di sebuah sekolah, didapati bahawa 20% daripada pelajar tingkatan 5 gagal dalam peperiksaan tengah tahun. Jika 8 orang pelajar daripada sekolah itu dipilih secara rawak, cari kebarangkalian bahawa
(a)    tepat 2 orang pelajar gagal dalam peperiksaan tengah tahun,
(b)   kurang daripada 3 orang pelajar gagal dalam peperiksaan tengah tahun.

Penyelesaian:
(a)
p = 20% = 0.2,
q = 1 – 0.2 = 0.8
X ~ B (8, 0.2)

P (X = 2)
8C2 (0.2)2 (0.8)6
= 0.2936

(b)
P (X < 3)
= P(X = 0) + P (X = 1) + P (X = 2)
= 8C0 (0.2)0 (0.8)8+ 8C1 (0.2)1 (0.8)7+ 8C2 (0.2)2(0.8)6
= 0.16777 + 0.33554 + 0.29360
= 0.79691

Bab 19 Taburan Kebarangkalian


8.2.3 Kebarangkalian Sesuatu Peristiwa
Contoh:
Jisim epal dalam sebuah gerai adalah bertaburan normal dengan min 220g dan varians 100g. Cari kebarangkalian bahawa sebiji epal dipilih secara rawak mempunyai jisim
(a) lebih daripada 230g.
(b) di antara 210g dengan 225g.
Seterusnya, cari nilai h supaya 90% daripada epal mempunyai jisim lebih daripada h g.

Penyelesaian:
μ = 220g
σ = √100 = 10g
Katakan X ialah jisim buah epal.

(a)
P (X > 230)
= P ( Z > 230 220 10 ) Tukar kepada taburan normal piawai ~ rumus Z = X μ σ  
= P (Z > 1)
= 0.1587

(b)
P (210 < X < 225)
= P ( 210 220 10 < Z < 225 220 10 ) Tukar kepada taburan normal piawai
= P (–1 < Z < 0.5)
= 1 – P (Z > 1) – P (Z > 0.5)
= 1 – 0.1587 – 0.3085
= 0.5328

90% (kebarangkalian = 0.9) daripada epal mempunyai jisim lebih daripada h g,
(X > h) = 0.9
(X < h) = 1 – 0.9
= 0.1

Daripada sifir taburan normal piawai,
(Z > 0.4602) = 0.1
(Z < –0.4602) = 0.1


h 220 10 = 0.4602
h – 220 = – 4.602
h = 215.4





Bab 19 Taburan Kebarangkalian


8.2.2c Taburan Normal Piawai (Contoh 3)

Contoh
3:
Cari nilai bagi k jika
(a) (Z > k) = 0.0480
(b) (Z > k) = 0.8350

Penyelesaian
:
(a)


Daripada sifir taburan normal piawai, k = 1.665


  

(b)


Daripada sifir taburan normal piawai,
k = –0.974 ← (nilai k adalah negatif kerana ia berada di sebelah kiri lengkung normal.